We study the distribution of quasars on the celestial sphere according to ground-based SDSS and space-based WISE and Gaia observations. All distributions as a function of galactic latitude, b, exhibit a decrease in quasar frequency well outside the dust in and near the galactic plane. We prove that the observed decrease in quasar frequency at high galactic latitudes is not accompanied by reddening, meaning that it can not be caused by dust. The scattering of light by the circumgalactic gas is negligible because the Thomson scattering cross section is very small. We conclude the observed scattering of light must be caused by dark matter in the galactic halo. We determine the mass and charge of dark matter particles. If the dark matter particle is a fermion its mass,
and charge
, where e is the elementary charge are:
eV and
. If however the dark matter particle is spinless then:
eV and
. These values for the charge of a dark matter particle are orders of magnitude higher than the upper limit of the neutrino charge according to laboratory experiments. Consequently, dark matter particles are not charged neutrinos. Since dark matter particles are charged, they must emit and absorb
References
[1]
Gattano, C., Souchay, J. and Barache, C. (2014) A Whole Sky Study of Quasars Known Population Starting from the LQAC-2 Compiled Catalogue. Astronomy & Astrophysics, 564, A117. https://doi.org/10.1051/0004-6361/201323238
[2]
Green, G.M., Schlafly, E., Zucker, C., Speagle, J.S. and Finkbeiner, D. (2019) A 3D Dust Map Based on Gaia, Pan-STARRS 1, and 2MASS. The Astrophysical Journal, 887, Article 93. https://doi.org/10.3847/1538-4357/ab5362
[3]
Schlegel, D.J., Finkbeiner, D.P. and Davis, M. (1998) Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds. The Astrophysical Journal, 500, 525-553. https://doi.org/10.1086/305772
[4]
York, D.G., Adelman, J., Anderson Jr., J.E., Anderson, S.F., Annis, J., Bahcall, N.A., et al. (2000) The Sloan Digital Sky Survey: Technical Summary. The Astronomical Journal, 120, 1579-1587. https://doi.org/10.1086/301513
[5]
Schlafly, E.F., Finkbeiner, D.P., Schlegel, D.J., Jurić, M., Ivezić, Ž., Gibson, R.R., et al. (2010) The Blue Tip of The Stellar Locus: Measuring Reddening with the Sloan Digital Sky Survey. The Astrophysical Journal, 725, 1175-1191. https://doi.org/10.1088/0004-637x/725/1/1175
[6]
Peek, J.E.G. and Graves, G.J. (2010) A Correction to the Standard Galactic Reddening Map: Passive Galaxies as Standard Crayons. The Astrophysical Journal, 719, 415-424. https://doi.org/10.1088/0004-637x/719/1/415
[7]
Jones, D.O., West, A.A. and Foster, J.B. (2011) Using M Dwarf Spectra to Map Extinction in the Local Galaxy. The Astronomical Journal, 142, Article 44. https://doi.org/10.1088/0004-6256/142/2/44
[8]
Schlafly, E.F. and Finkbeiner, D.P. (2011) Measuring Reddening with Sloan Digital Sky Survey Stellar Spectra and Recalibrating SFD. The Astrophysical Journal, 737, Article 103. https://doi.org/10.1088/0004-637x/737/2/103
[9]
Peek, J.E.G. and Schiminovich, D. (2013) Ultraviolet Extinction at High Galactic Latitudes. The Astrophysical Journal, 771, Article 68. https://doi.org/10.1088/0004-637x/771/1/68
[10]
Yuan, H.B., Liu, X.W. and Xiang, M.S. (2013) Empirical Extinction Coefficients for the GALEX, SDSS, 2MASS and WISE Passbands. Monthly Notices of the Royal Astronomical Society, 430, 2188-2199. https://doi.org/10.1093/mnras/stt039
[11]
Peek, J.E.G., Ménard, B. and Corrales, L. (2015) Dust in the Circumgalactic Medium of Low-Redshift Galaxies. The Astrophysical Journal, 813, Article 7. https://doi.org/10.1088/0004-637x/813/1/7
[12]
Stahl, B. (2020) DeepSIP: Deep Learning of Supernova Ia Parameters. Astro-physics Source Code Library, ascl: 2006.023.
[13]
Abbott, T.M.C., Abdalla, F.B., Avila, S., Banerji, M., Baxter, E., Bechtol, K., et al. (2019) Dark Energy Survey Year 1 Results: Constraints on Extended Cosmological Models from Galaxy Clustering and Weak Lensing. Physical Review D, 99, Article ID: 123505. https://doi.org/10.1103/physrevd.99.123505
[14]
Pilipenko, S.V. (2007) The Space Distribution of Quasars. Astronomy Reports, 51, 820-829. https://doi.org/10.1134/s106377290710006x
[15]
Dravskikh, A.F. and Dravskikh, Z.V. (1999) A Large-Scale Deficit of Quasars around Quasars with Absorption Spectra. Astronomy Reports, 43, 13-19.
[16]
Hartwick, F.D.A. and Schade, D. (1990) The Space Distribution of Quasars. AnnualReview of Astronomy and Astrophysics, 28, 437-489. https://doi.org/10.1146/annurev.aa.28.090190.002253
[17]
Arp, H. (1984) Distribution of Quasars on the Sky. Journal of Astrophysics and Astronomy, 5, 31-41. https://doi.org/10.1007/bf02714970
[18]
Zhao, W. and Santos, L. (2016) Preferred Axis in Cosmology. arXiv:1604.05484.
[19]
Marocco, F., Eisenhardt, P.R.M., Fowler, J.W., Kirkpatrick, J.D., Meisner, A.M., Schlafly, E.F., et al. (2021) The Catwise2020 Catalog. The Astrophysical Journal Supplement Series, 253, Article 8. https://doi.org/10.3847/1538-4365/abd805
[20]
Maartens, R. (2011) Is the Universe Homogeneous? Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369, 5115-5137. https://doi.org/10.1098/rsta.2011.0289
[21]
Pelgrims, V. (2019) Cosmological-Scale Coherent Orientations of Quasar Optical Polarization Vectors in the Planckera. Astronomy & Astrophysics, 622, A145. https://doi.org/10.1051/0004-6361/201731294
[22]
Bertone, G. and Tait, T.M.P. (2018) A New Era in the Search for Dark Matter. Nature, 562, 51-56. https://doi.org/10.1038/s41586-018-0542-z
[23]
Milgrom, M. (1983) A Modification of the Newtonian Dynamics as a Possible Alternative to the Hidden Mass Hypothesis. The Astrophysical Journal, 270, 365-370. https://doi.org/10.1086/161130
[24]
Miller, M.J. and Bregman, J.N. (2015) Constraining the Milky Way’s Hot Gas Halo with O VII and O VIII Emission Lines. The Astrophysical Journal, 800, Article 14. https://doi.org/10.1088/0004-637x/800/1/14
[25]
Moffat, J.W. (2006) Scalar-Tensor-Vector Gravity Theory. Journal of Cosmology and Astroparticle Physics, 2006, Article 4. https://doi.org/10.1088/1475-7516/2006/03/004
[26]
Brownstein, J.R. and Moffat, J.W. (2006) Galaxy Rotation Curves without Nonbaryonic Dark Matter. The Astrophysical Journal, 636, 721-741. https://doi.org/10.1086/498208
[27]
Ghaffarnejad, H. and Dehghani, R. (2019) Galaxy Rotation Curves and Preferred Reference Frame Effects. The European Physical Journal C, 79, Article 468. https://doi.org/10.1140/epjc/s10052-019-6985-z
[28]
Milgrom, M. (2020) Fast-Rotating Galaxies Do Not Depart from the MOND Mass-Asymp-Totic-Speed Relation. arXiv: 2002.10204.
[29]
Bekenstein, J.D. (2004) Relativistic Gravitation Theory for the Modified Newtonian Dynamics Paradigm. Physical Review D, 70, Article ID: 083509. https://doi.org/10.1103/physrevd.70.083509
[30]
Kroupa, P. (2013) The Dark Matter Crisis: Problems with the Current Standard Model of Cosmology and Steps towards an Improved Model. Probes of Dark Matter on Galaxy Scales, Monterey, 14-19 July 2013.
[31]
Kroupa, P. (2014) The Planar Satellite Distributions around Andromeda, the Milky Way and Other Galaxies, and Their Implications for Fundamental Physics. In: Iodice, E. and Corsini, E.M. (Eds.), Multi-Spin Galaxies, Astronomical Society of the Pacific.
[32]
Kroupa, P., Pawlowski, M. and Milgrom, M. (2015) The Failures of the Standard Model of Cosmology Require a New Paradigm. In: Kjell, R., Ruffini, R., Rosquist, K. and Jantzen, R.T., Eds., The Thirteenth Marcel Grossmann Meeting, World Scientific, 696-707. https://doi.org/10.1142/9789814623995_0034
[33]
López-Corredoira, M. and Kroupa, P. (2016) The Number of Tidal Dwarf Satellite Galaxies in Dependence of Bulge Index. The Astrophysical Journal, 817, Article 75. https://doi.org/10.3847/0004-637x/817/1/75
[34]
McGaugh, S.S., Lelli, F. and Schombert, J.M. (2016) Radial Acceleration Relation in Rotationally Supported Galaxies. Physical Review Letters, 117, Article ID: 201101. https://doi.org/10.1103/physrevlett.117.201101
[35]
Graham, P.W., Irastorza, I.G., Lamoreaux, S.K., Lindner, A. and van Bibber, K.A. (2015) Experimental Searches for the Axion and Axion-Like Particles. Annual Review of Nuclear and Particle Science, 65, 485-514. https://doi.org/10.1146/annurev-nucl-102014-022120
[36]
Kamaha, A.C. (2015) Improved Limits on the Existence of Dark Matter. The Final Results from the PICASSO Experiment. Ph.D. Thesis, Queens University.
[37]
Undagoitia, T.M. and Rauch, L. (2015) Dark Matter Direct-Detection Experiments. Journal of Physics G: Nuclear and Particle Physics, 43, Article ID: 013001. https://doi.org/10.1088/0954-3899/43/1/013001
[38]
Irastorza, I.G. and Redondo, J. (2018) New Experimental Approaches in the Search for Axion-Like Particles. Progress in Particle and Nuclear Physics, 102, 89-159. https://doi.org/10.1016/j.ppnp.2018.05.003
[39]
Schumann, M. (2019) Direct Detection of WIMP Dark Matter: Concepts and Status. Journal of Physics G: Nuclear and Particle Physics, 46, Article ID: 103003. https://doi.org/10.1088/1361-6471/ab2ea5
[40]
Heros, C.P. (2020) Status of Direct and Indirect Dark Matter Searches. arXiv: 2001.06193.
[41]
Bertone, G., Hooper, D. and Silk, J. (2005) Particle Dark Matter: Evidence, Candidates and Constraints. Physics Reports, 405, 279-390. https://doi.org/10.1016/j.physrep.2004.08.031
[42]
Bertone, G. and Hooper, D. (2018) History of Dark Matter. Reviews of Modern Physics, 90, Article ID: 045002. https://doi.org/10.1103/revmodphys.90.045002
[43]
Safarzadeh, M. and Spergel, D.N. (2020) Ultra-Light Dark Matter Is Incompatible with the Milky Way’s Dwarf Satellites. The Astrophysical Journal, 893, Article 21. https://doi.org/10.3847/1538-4357/ab7db2
[44]
Glennon, N., Musoke, N. and Prescod-Weinstein, C. (2023) Simulations of Multifield Ultralight Axionlike Dark Matter. Physical Review D, 107, Article ID: 063520. https://doi.org/10.1103/physrevd.107.063520
[45]
Andrae, R., Fouesneau, M., Creevey, O., Ordenovic, C., Mary, N., Burlacu, A., et al. (2018) Gaia Data Release 2. Astronomy & Astrophysics, 616, A8. https://doi.org/10.1051/0004-6361/201732516
[46]
Alexander, S., McDonough, E. and Spergel, D.N. (2021) Strongly-Interacting Ultralight Millicharged Particles. Physics Letters B, 822, Article ID: 136653. https://doi.org/10.1016/j.physletb.2021.136653
[47]
Cline, J.M., Liu, Z. and Xue, W. (2012) Millicharged Atomic Dark Matter. Physical Review D, 85, Article ID: 101302. https://doi.org/10.1103/physrevd.85.101302
[48]
Muñoz, J.B. and Loeb, A. (2018) A Small Amount of Mini-Charged Dark Matter Could Cool the Baryons in the Early Universe. Nature, 557, 684-686. https://doi.org/10.1038/s41586-018-0151-x
[49]
Davis, J.H. and Silk, J. (2015) Glow in the Dark Matter: Observing Galactic Halos with Scattered Light. Physical Review Letters, 114, Article ID: 051303. https://doi.org/10.1103/physrevlett.114.051303
[50]
Wilkinson, R.J., Lesgourgues, J. and Bœhm, C. (2014) Using the CMB Angular Power Spectrum to Study Dark Matter-Photon Interactions. Journal of Cosmology and Astroparticle Physics, 2014, Article 26. https://doi.org/10.1088/1475-7516/2014/04/026
[51]
McDermott, S.D., Yu, H. and Zurek, K.M. (2011) Turning off the Lights: How Dark Is Dark Matter? Physical Review D, 83, Article ID: 063509. https://doi.org/10.1103/physrevd.83.063509
[52]
Foot, R. and Volkas, R.R. (2004) Spheroidal Galactic Halos and Mirror Dark Matter. Physical Review D, 70, Article ID: 123508. https://doi.org/10.1103/physrevd.70.123508
[53]
Flesch, E.W. (2019) The Million Quasars (Milliquas) Catalogue. arXiv: 1912.05614.
[54]
Aguado, D.S., Ahumada, R., Almeida, A., Anderson, S.F., Andrews, B.H., Anguiano, B., et al. (2019) The Fifteenth Data Release of the Sloan Digital Sky Surveys: First Release of MaNGA-Derived Quantities, Data Visualization Tools, and Stellar Library. The Astrophysical Journal Supplement Series, 240, Article 23. https://doi.org/10.3847/1538-4365/aaf651
[55]
Brown, A.G.A., Vallenari, A., Prusti, T., de Bruijne, J.H.J., Babusiaux, C., Bailer-Jones, C.A.L., et al. (2018) Gaia Data Release 2. Astronomy & Astrophysics, 616, A1. https://doi.org/10.1051/0004-6361/201833051
[56]
Arenou, F., Luri, X., Babusiaux, C., Fabricius, C., Helmi, A., Muraveva, T., et al. (2018) Gaia Data Release 2. Astronomy & Astrophysics, 616, A17. https://doi.org/10.1051/0004-6361/201833234
[57]
Assef, R.J., Stern, D., Noirot, G., Jun, H.D., Cutri, R.M. and Eisenhardt, P.R.M. (2018) The Wise AGN Catalog. The Astrophysical Journal Supplement Series, 234, Article 23. https://doi.org/10.3847/1538-4365/aaa00a
[58]
Assef, R.J., Stern, D., Kochanek, C.S., Blain, A.W., Brodwin, M., Brown, M.J.I., et al. (2013) Mid-Infrared Selection of Active Galactic Nuclei with the Wide-FieldInfraredSurveyExplorer. II. Properties of wise-Selected Active Galactic Nuclei in the Ndwfs Boötes Field. The Astrophysical Journal, 772, Article 26. https://doi.org/10.1088/0004-637x/772/1/26
[59]
Wright, E.L., Eisenhardt, P.R.M., Mainzer, A.K., Ressler, M.E., Cutri, R.M., Jarrett, T., et al. (2010) The Wide-Field Infrared Survey Explorer (Wise): Mission Description and Initial On-Orbit Performance. The Astronomical Journal, 140, 1868-1881. https://doi.org/10.1088/0004-6256/140/6/1868
[60]
Gonçalves, R.S., Carvalho, G.C., Bengaly Jr, C.A.P., Carvalho, J.C., Bernui, A., Alcaniz, J.S., et al. (2017) Cosmic Homogeneity: A Spectroscopic and Model-Independent Measurement. Monthly Notices of the Royal Astronomical Society: Letters, 475, L20-L24. https://doi.org/10.1093/mnrasl/slx202
[61]
Alonso, D., Salvador, A.I., Sánchez, F.J., Bilicki, M., García-Bellido, J. and Sánchez, E. (2015) Homogeneity and Isotropy in the Two Micron All Sky Survey Photometric Redshift Catalogue. Monthly Notices of the Royal Astronomical Society, 449, 670-684. https://doi.org/10.1093/mnras/stv309
[62]
Scrimgeour, M.I., Davis, T., Blake, C., James, J.B., Poole, G.B., Staveley-Smith, L., et al. (2012) The Wigglez Dark Energy Survey: The Transition to Large-Scale Cosmic Homogeneity. Monthly Notices of the Royal Astronomical Society, 425, 116-134. https://doi.org/10.1111/j.1365-2966.2012.21402.x
[63]
Spitzer, L.J. (1956) On a Possible Interstellar Galactic Corona. The Astrophysical Journal, 124, Article 20. https://doi.org/10.1086/146200
[64]
Weisheit, J.C. and Collins, L.A. (1976) Model Galactic Coronae—Ionization Structure and Absorption-Line Spectra. The Astrophysical Journal, 210, Article 299. https://doi.org/10.1086/154832
[65]
Chevalier, R.A. and Oegerle, W.R. (1979) The Galactic Corona. The Astrophysical Journal, 227, Article 398. https://doi.org/10.1086/156744
[66]
Sturrock, P.A. and Stern, R. (1980) Is the Galactic Corona Produced by Galactic Flares. The Astrophysical Journal, 238, Article 98. https://doi.org/10.1086/157962
[67]
Marshall, F.J. and Clark, G.W. (1984) SAS 3 Survey of the Soft X-Ray Background. The Astrophysical Journal, 287, Article 633. https://doi.org/10.1086/162721
[68]
Sembach, K.R. and Savage, B.D. (1992) Observations of Highly Ionized Gas in the Galactic Halo. The Astrophysical Journal Supplement Series, 83, Article 147. https://doi.org/10.1086/191734
[69]
Savage, B.D. (1992) Absorption Line Observations of Milky Way Disk and Halo Gas with the Hubble Space Telescope. European Southern Observatory Conference and Workshop Proceedings, 44, 309.
[70]
Shull, J.M. and Slavin, J.D. (1994) Highly Ionized Gas in the Galactic Halo. The Astrophysical Journal, 427, Article 784. https://doi.org/10.1086/174185
[71]
Lehner, N. and Howk, J.C. (2011) A Reservoir of Ionized Gas in the Galactic Halo to Sustain Star Formation in the Milky Way. Science, 334, 955-958. https://doi.org/10.1126/science.1209069
[72]
Miller, M.J. and Bregman, J.N. (2013) The Structure of the Milky Way’s Hot Gas Halo. The Astrophysical Journal, 770, Article 118. https://doi.org/10.1088/0004-637x/770/2/118
[73]
Nakashima, S., Inoue, Y., Yamasaki, N., Sofue, Y., Kataoka, J. and Sakai, K. (2018) Spatial Distribution of the Milky Way Hot Gaseous Halo Constrained by Suzaku X-Ray Observations. The Astrophysical Journal, 862, Article 34. https://doi.org/10.3847/1538-4357/aacceb
[74]
Putman, M.E., Peek, J.E.G. and Joung, M.R. (2012) Gaseous Galaxy Halos. AnnualReview of Astronomy and Astrophysics, 50, 491-529. https://doi.org/10.1146/annurev-astro-081811-125612
[75]
Froula, D.H., Glenzer, S.H., et al. (2010) Plasma Scattering of Electromagnetic Radiation: Theory and Measurement Techniques. Academic Press.
[76]
Troitsky, S. (2017) Density and Metallicity of the Milky Way Circumgalactic Gas. Monthly Notices of the Royal Astronomical Society: Letters, 468, L36-L40. https://doi.org/10.1093/mnrasl/slx022
[77]
Fang, T., Bullock, J. and Boylan-Kolchin, M. (2012) On the Hot Gas Content of the Milky Way Halo. The Astrophysical Journal, 762, Article 20. https://doi.org/10.1088/0004-637x/762/1/20
[78]
Einasto, J. (1965) On the Construction of a Composite Model for the Galaxy and on the Determination of the System of Galactic Parameters. Trudy Astrofizicheskogo Instituta Alma-Ata, 5, 87-100.
[79]
Burkert, A. (1996) The Structure of Dark Matter Halos in Dwarf Galaxies. Symposium—International Astronomical Union, 171, 175-178. https://doi.org/10.1017/s0074180900232324
[80]
Navarro, J.F., Frenk, C.S. and White, S.D.M. (1997) A Universal Density Profile from Hierarchical Clustering. The Astrophysical Journal, 490, 493-508. https://doi.org/10.1086/304888
[81]
Blumenthal, G.R., Faber, S.M., Primack, J.R. and Rees, M.J. (1984) Formation of Galaxies and Large-Scale Structure with Cold Dark Matter. Nature, 311, 517-525. https://doi.org/10.1038/311517a0
[82]
Alexander, S., Bramburger, J.J. and McDonough, E. (2019) Dark Disk Substructure and Superfluid Dark Matter. Physics Letters B, 797, Article ID: 134871. https://doi.org/10.1016/j.physletb.2019.134871
[83]
Smith, M.C., Wyn Evans, N. and An, J.H. (2009) The Tilt of the Halo Velocity Ellipsoid and the Shape of the Milky Way Halo. The Astrophysical Journal, 698, 1110-1116. https://doi.org/10.1088/0004-637x/698/2/1110
[84]
Ibata, R., Lewis, G.F., Martin, N.F., Bellazzini, M. and Correnti, M. (2013) Does the Sagittarius Stream Constrain the Milky Way Halo to Be Triaxial? The Astrophysical Journal, 765, L15. https://doi.org/10.1088/2041-8205/765/1/l15
[85]
Vera-Ciro, C.A., Sales, L.V., Helmi, A. and Navarro, J.F. (2014) The Shape of Dark Matter Subhaloes in the Aquarius Simulations. Monthly Notices of the Royal Astronomical Society, 439, 2863-2872. https://doi.org/10.1093/mnras/stu153
[86]
Wegg, C., Gerhard, O. and Bieth, M. (2019) The Gravitational Force Field of the Galaxy Measured from the Kinematics of RR Lyrae in Gaia. Monthly Notices of the Royal Astronomical Society, 485, 3296-3316. https://doi.org/10.1093/mnras/stz572
[87]
Yao, Y., Wang, Q.D., Hagihara, T., Mitsuda, K., McCammon, D. and Yamasaki, N.Y. (2008) X-RAY and Ultraviolet Spectroscopy of galactic Diffuse Hot Gas along the Large Magellanic Cloud X-3 Sight Line. The Astrophysical Journal, 690, 143-153. https://doi.org/10.1088/0004-637x/690/1/143
[88]
Hagihara, T., Yao, Y., Yamasaki, N.Y., Mitsuda, K., Wang, Q.D., Takei, Y., et al. (2010) X-Ray Spectroscopy of Galactic Hot Gas along the PKS 2155$-$304 Sight Line. Publications of the Astronomical Society of Japan, 62, 723-733. https://doi.org/10.1093/pasj/62.3.723
[89]
Gupta, A., Mathur, S., Krongold, Y., Nicastro, F. and Galeazzi, M. (2012) A Huge Reservoir of Ionized Gas around the Milky Way: Accounting for the Missing Mass? The Astrophysical Journal, 756, L8. https://doi.org/10.1088/2041-8205/756/1/l8
[90]
Greenberg, J.M., Ferrini, F., Barsella, B. and Aiello, S. (1987) Is There Dust in Galactic Haloes? Nature, 327, 214-216. https://doi.org/10.1038/327214a0
[91]
Zaritsky, D. (1994) Preliminary Evidence for Dust in Galactic Halos. The Astronomical Journal, 108, 1619. https://doi.org/10.1086/117182
[92]
Holwerda, B.W., Keel, W.C., Williams, B., Dalcanton, J.J. and de Jong, R.S. (2009) An Extended Dust Disk in a Spiral Galaxy: An Occulting Galaxy Pair in the ACS nearby Galaxy Survey Treasury. The Astronomical Journal, 137, 3000-3008. https://doi.org/10.1088/0004-6256/137/2/3000
[93]
Roussel, H., Wilson, C.D., Vigroux, L., Isaak, K.G., Sauvage, M., Madden, S.C., et al. (2010) SPIRE Imaging of M 82: Cool Dust in the Wind and Tidal Streams. Astronomy and Astrophysics, 518, L66. https://doi.org/10.1051/0004-6361/201014567
[94]
Fukugita, M. (2011) Global Amount of Dust in the Universe. arXiv: 1103.4191.
[95]
Hodges-Kluck, E. and Bregman, J.N. (2014) Detection of Ultraviolet Halos around Highly Inclined Galaxies. The Astrophysical Journal, 789, Article 131. https://doi.org/10.1088/0004-637x/789/2/131
[96]
Ménard, B., Scranton, R., Fukugita, M. and Richards, G. (2010) Measuring the Galaxy-Mass and Galaxy-Dust Correlations through Magnification and Reddening. Monthly Notices of the Royal Astronomical Society, 405, 1025-1039. https://doi.org/10.1111/j.1365-2966.2010.16486.x
[97]
Vanden Berk, D. (2014) Ultraviolet Dust Maps of the Milky Way at High Galactic Latitudes with GALEX Data. NASA Proposal ID: 14-ADAP14-181.
[98]
Flesch, E.W. (2021) The Million Quasars (Milliquas) v7.2 Catalogue, Now with VLASS Associations. The Inclusion of SDSS-DR16Q Quasars Is Detailed. arXiv: 2105.12985.
[99]
Calmet, X. and Kuipers, F. (2021) Implications of Quantum Gravity for Dark Matter. International Journal of Modern Physics D, 30, Article ID: 214200. https://doi.org/10.1142/s0218271821420049
[100]
Klein, O. and Nishina, Y. (1929) Über die Streuung von Strahlung durch freie Elektronen nach der neuen relativistischen Quantendynamik von Dirac. Zeitschrift für Physik, 52, 853-868. https://doi.org/10.1007/bf01366453
[101]
Gould, R.J. (1993) Neutron-photon Scattering in the Early Universe. The Astrophysical Journal, 417, Article 12. https://doi.org/10.1086/173287
[102]
Ferreira, E.G.M. (2021) Ultra-Light Dark Matter. The Astronomy and Astrophysics Review, 29. https://doi.org/10.1007/s00159-021-00135-6
[103]
Hui, L., Ostriker, J.P., Tremaine, S. and Witten, E. (2017) Ultralight Scalars as Cosmological Dark Matter. Physical Review D, 95, Article ID: 043541. https://doi.org/10.1103/physrevd.95.043541
[104]
Dirac, P.A.M. (1926) Relativity Quantum Mechanics with an Application to Compton Scattering. Proceedings of the Royal Society of London Series A, 111, 405-423. https://doi.org/10.1098/rspa.1926.0074
[105]
Davidson, S., Campbell, B. and Bailey, D. (1991) Limits on Particles of Small Electric Charge. Physical Review D, 43, 2314-2321. https://doi.org/10.1103/physrevd.43.2314
[106]
Buen-Abad, M.A., Essig, R., McKeen, D. and Zhong, Y. (2022) Cosmological Constraints on Dark Matter Interactions with Ordinary Matter. Physics Reports, 961, 1-35. https://doi.org/10.1016/j.physrep.2022.02.006
[107]
Munoz, J.B. and Loeb, A. (2018) Insights on Dark Matter from Hydrogen during Cosmic Dawn. arXiv: 1802.10094.
[108]
Gorbunov, D., Kalashnikov, D., Pakhlov, P. and Uglov, T. (2023) On Direct Observation of Millicharged Particles at c-τ Factories and Other e+ e−-Colliders. Physics Letters B, 843, Article ID: 138033. https://doi.org/10.1016/j.physletb.2023.138033
[109]
Feng, J.L., Kling, F., Reno, M.H., Rojo, J., Soldin, D., Anchordoqui, L.A., et al. (2023) The Forward Physics Facility at the High-Luminosity LHC. Journal of Physics G: Nuclear and Particle Physics, 50, Article ID: 030501. https://doi.org/10.1088/1361-6471/ac865e
[110]
Prabhu, A. and Blanco, C. (2023) Constraints on Dark Matter-Electron Scattering from Molecular Cloud Ionization. Physical Review D, 108, Article ID: 035035. https://doi.org/10.1103/physrevd.108.035035
[111]
Gardner, S. and Latimer, D.C. (2010) Dark Matter Constraints from a Cosmic Index of Refraction. Physical Review D, 82, Article ID: 063506. https://doi.org/10.1103/physrevd.82.063506
[112]
Caputo, A., Sberna, L., Frías, M., Blas, D., Pani, P., Shao, L., et al. (2019) Constraints on Millicharged Dark Matter and Axionlike Particles from Timing of Radio Waves. Physical Review D, 100, Article ID: 063515. https://doi.org/10.1103/physrevd.100.063515
[113]
K.A., S., Majumdar, A., Papoulias, D.K., Prajapati, H. and Srivastava, R. (2023) Implications of First LZ and Xenonnt Results: A Comparative Study of Neutrino Properties and Light Mediators. Physics Letters B, 839, Article ID: 137742. https://doi.org/10.1016/j.physletb.2023.137742
[114]
Khan, A.N. (2022) Neutrino Electromagnetic Interactions with Different Quenching Factors. arXiv: 2203.08892.
[115]
Bonet, H., Bonhomme, A., Buck, C., Fülber, K., Hakenmüller, J., Hempfling, J., et al. (2022) First Upper Limits on Neutrino Electromagnetic Properties from the CONUS Experiment. The European Physical Journal C, 82, Article 813. https://doi.org/10.1140/epjc/s10052-022-10722-1
[116]
Read, J.I. (2014) The Local Dark Matter Density. Journal of Physics G: Nuclear and Particle Physics, 41, Article ID: 063101. https://doi.org/10.1088/0954-3899/41/6/063101
[117]
de Salas, P.F., Malhan, K., Freese, K., Hattori, K. and Valluri, M. (2019) On the Estimation of the Local Dark Matter Density Using the Rotation Curve of the Milky Way. Journal of Cosmology and Astroparticle Physics, 2019, Article 37. https://doi.org/10.1088/1475-7516/2019/10/037
[118]
Eilers, A., Hogg, D.W., Rix, H. and Ness, M.K. (2019) The Circular Velocity Curve of the Milky Way from 5 to 25 KPC. The Astrophysical Journal, 871, Article 120. https://doi.org/10.3847/1538-4357/aaf648
[119]
Taylor, J. (1997) Introduction to Error Analysis, the Study of Uncertainties in Physical Measurements. 2nd Edition, University Science Books.