全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

不同环境控制棒包壳–平面微动磨损有限元分析
Finite Element Analysis of Fretting Wear on Control Rod Cladding and Plane under Varying Environments

DOI: 10.12677/nst.2024.123018, PP. 171-184

Keywords: 磨损,控制棒,有限元
Wear
, Control Rod, Finite Element Method

Full-Text   Cite this paper   Add to My Lib

Abstract:

控制棒包壳的磨损问题在核反应堆的安全运行中扮演着至关重要的角色。本研究旨在深入探讨控制棒包壳的磨损机制及其影响因素,以提高反应堆的安全性和性能。本研究基于E. Marc等试验测量的摩擦系数和磨损系数,利用商业有限元分析软件ABAQUS,建立了控制棒包壳与接触区域的模型。分析过程中,采用能量磨损模型,同时借助UMESHMOTION子程序和ALE自适应网格方法,实现了磨损表面的动态更新。在确保计算结果准确性的前提下,对比了二维与三维模型,最终选择了计算效率更高的二维模型进行分析。本研究进一步探讨了加速因子、摩擦系数和分析步长对计算结果的影响,确立了合理的参数设置,为控制棒磨损演化规律的研究提供了基础。通过对不同工况下磨损深度分析,得出了如下主要结论:适当的液体润滑对于减少包壳磨损非常重要。研究结果不仅直观地展示了不同环境下的控制棒包壳磨损行为,而且为控制棒寿命预测和优化设计提供了宝贵的基础。
The wear of control rod cladding plays a crucial role in the safe operation of nuclear reactors. This study aims to delve into the mechanisms of control rod cladding wear and its influencing factors to enhance reactor safety and performance. Utilizing friction and wear coefficients measured in experiments by E. Marc et al., a wear analysis model between control rod cladding and the contact area was established using the finite element analysis software ABAQUS. An energy model was applied, combined with the UMESHMOTION subroutine and ALE adaptive meshing method to achieve dynamic updating of the worn surface. After comparing two-dimensional and three-dimensional models, the more computationally efficient two-dimensional model was selected for analysis. Furthermore, this study explored the impacts of acceleration factors, friction coefficients, and analysis step sizes on computational results, establishing rational parameter settings and laying the groundwork for studying the evolution of control rod wear. Through analysis of wear depth under various work conditions, the following conclusions were drawn: Proper liquid lubrication is highly significant in reducing cladding wear. The research results not only intuitively demonstrate the cladding wear behavior of control rod cladding under different environments but also provide valuable references for predicting the lifespan and optimizing the design of control rod cladding.

References

[1]  Reynier, B., Phalippou, C., Riberty, P. and Sornin, J. (2005) Influence of a Periodic Latency Time on the Impact/Sliding Wear Damage of Two PWR Control Rods and Guide Cards Specimens. Wear, 259, 1314-1323.
https://doi.org/10.1016/j.wear.2005.02.069
[2]  Van Herpen, A., Reynier, B. and Phalippou, C. (2001) Effect of Test Duration on Impact/Sliding Wear Damage of 304L Stainless Steel at Room Temperature: Metallurgical and Micromechanical Investigations. Wear, 249, 37-49.
https://doi.org/10.1016/s0043-1648(01)00521-x
[3]  Kim, S. and Shin, C. (2001) The Experiment of Flow Induced Vibration in PWR RCCAs. KSME International Journal, 15, 291-299.
https://doi.org/10.1007/bf03185212
[4]  Kaiser, A., Bec, S., Vernot, J. and Langlade, C. (2006) Wear Damage Resulting from Sliding Impact Kinematics in Pressurized High Temperature Water: Energetical and Statistical Approaches. Journal of Physics D: Applied Physics, 39, 3193-3199.
https://doi.org/10.1088/0022-3727/39/15/s09
[5]  Marc, E., Fouvry, S., Phalippou, C. and Maitournam, H. (2016) Fretting Wear Response of a Nitrided 316L SS/304L SS Interface: Effect of Lithium/Bore Liquid Environment. Surface and Coatings Technology, 308, 226-235.
https://doi.org/10.1016/j.surfcoat.2016.06.091
[6]  Marc, E., Fouvry, S., Graton, O., Phalippou, C. and Maitournam, H. (2017) Fretting Wear of a Nitrided 316L/304L Contact Subject to in-Phase Normal Force Fluctuation in Dry and Lithium-Boron Solution: An RP-Friction Energy Wear Approach. Wear, 376, 690-704.
https://doi.org/10.1016/j.wear.2017.01.075
[7]  霍永忠, 尹东, 赵杰江, 等. 微动磨损与微动疲劳寿命的计算与分析方法[J]. 力学季刊, 2015, 36(2): 165-178.
[8]  李玲, 康乐, 阮晓光, 等. 不同加载条件下柱面/平面微动磨损有限元分析[J]. 机械科学与技术, 2018, 37(12): 1854-1861.
[9]  Kermouche, G., Kaiser, A.-L., Gilles, P. and Bergheau, J.M. (2007) Combined Numerical and Experimental Approach of the Impact-Sliding Wear of a Stainless Steel in a Nuclear Reactor. Wear, 263, 1551-1555.
https://doi.org/10.1016/j.wear.2007.02.015
[10]  张惠民. 压水堆控制棒流致振动行为的研究[D]: [博士学位论文]. 北京: 华北电力大学, 2020.
[11]  Zhang, C., Wang, L., Wang, M., Xu, T., Barthet, A., Liu, Y., et al. (2022) Numerical Simulation of Pressure Force for Control Rod Guide Tube in PWR. Progress in Nuclear Energy, 148, Article 104214.
https://doi.org/10.1016/j.pnucene.2022.104214
[12]  Phalippou, C. and Delaune, X. (1996) The Predictive Analysis of Wear Work-Rates in Wear Test Rigs. CEA Centre d’Etudes de Saclay.
[13]  Kauzlarich, J.J. and Williams, J.A. (2001) Archard Wear and Component Geometry. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 215, 387-403.
https://doi.org/10.1243/1350650011543628
[14]  Fouvry, S., Liskiewicz, T., Kapsa, P., Hannel, S. and Sauger, E. (2003) An Energy Description of Wear Mechanisms and Its Applications to Oscillating Sliding Contacts. Wear, 255, 287-298.
https://doi.org/10.1016/s0043-1648(03)00117-0
[15]  Chen, Y., Gong, W. and Kang, R. (2020) Review and Propositions for the Sliding/Impact Wear Behavior in a Contact Interface. Chinese Journal of Aeronautics, 33, 391-406.
https://doi.org/10.1016/j.cja.2018.06.004

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413