全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Glyphosate Exposure Associated with Human Neurodegenerative Disorders: A Scoping Review

DOI: 10.4236/jbbs.2024.147012, PP. 187-209

Keywords: Herbicide, Glyphosate, Roundup, Neurodegeneration, Neurodegenerative Disorder, Parkinson’s Disease, Alzheimer’s Disease, Seizures, Autism Spectrum Disorder, Gut-Brain Axis

Full-Text   Cite this paper   Add to My Lib

Abstract:

Chemically engineered agricultural products such as pesticides, insecticides, and herbicides, although used considerably for both industrialized and personal agricultural use, have recently been associated with a number of serious human health disorders. This rapid literature review aims to accumulate and analyze research from the last ten years, focusing specifically on the effects of exposure to glyphosate-based herbicide products such as Roundup as associated with the formation of various neurological disorders. Specifically, this review focuses on laboratory research using animal models or human cell cultures as well as human population-based epidemiological studies. It associates exposure to glyphosate or glyphosate-based products with the formation or exacerbation of neurological disorders such as Parkinson’s disease, Alzheimer’s disease, seizures, and autism spectrum disorder. In addition, it examines the correlation between the gut-brain axis, exposure to glyphosate, and neurodegeneration.

References

[1]  Pathak, V.M., Verma, V.K., Rawat, B.S., Kaur, B., Babu, N., Sharma, A., et al. (2022) Current Status of Pesticide Effects on Environment, Human Health and It’s Eco-Friendly Management as Bioremediation: A Comprehensive Review. Frontiers in Microbiology, 13, Article 962619.
https://doi.org/10.3389/fmicb.2022.962619

[2]  Hartzler, B. (2001) Glyphosate—A Review. Iowa Soybean Digest. Iowa State University Extension and Outreach.
https://crops.extension.iastate.edu/encyclopedia/glyphosate-review

[3]  Henderson, A.M., Gervais, J.A., Luukinen, B., Buhl, K., Stone, D., Cross, A. and Jenkins, J. (2010) Glyphosate General Fact Sheet. National Pesticide Information Center, Oregon State University Extension Services.
http://npic.orst.edu/factsheets/glyphogen.html

[4]  Connolly, A., Jones, K., Basinas, I., Galea, K.S., Kenny, L., McGowan, P., et al. (2019) Exploring the Half-Life of Glyphosate in Human Urine Samples. International Journal of Hygiene and Environmental Health, 222, 205-210.
https://doi.org/10.1016/j.ijheh.2018.09.004

[5]  Soares, D., Silva, L., Duarte, S., Pena, A. and Pereira, A. (2021) Glyphosate Use, Toxicity and Occurrence in Food. Foods, 10, Article 2785.
https://doi.org/10.3390/foods10112785

[6]  Eskenazi, B., Gunier, R.B., Rauch, S., Kogut, K., Perito, E.R., Mendez, X., et al. (2023) Association of Lifetime Exposure to Glyphosate and Aminomethylphosphonic Acid (AMPA) with Liver Inflammation and Metabolic Syndrome at Young Adulthood: Findings from the CHAMACOS Study. Environmental Health Perspectives, 131, Article ID: 37001.
https://doi.org/10.1289/ehp11721

[7]  Jarrell, Z.R., Ahammad, M.U. and Benson, A.P. (2020) Glyphosate-Based Herbicide Formulations and Reproductive Toxicity in Animals. Veterinary and Animal Science, 10, Article ID: 100126.
https://doi.org/10.1016/j.vas.2020.100126

[8]  Zhang, L., Rana, I., Shaffer, R.M., Taioli, E. and Sheppard, L. (2019) Exposure to Glyphosate-Based Herbicides and Risk for Non-Hodgkin Lymphoma: A Meta-Analysis and Supporting Evidence. Mutation Research/Reviews in Mutation Research, 781, 186-206.
https://doi.org/10.1016/j.mrrev.2019.02.001

[9]  Cattani, D., Cesconetto, P.A., Tavares, M.K., Parisotto, E.B., De Oliveira, P.A., Rieg, C.E.H., et al. (2017) Developmental Exposure to Glyphosate-Based Herbicide and Depressive-Like Behavior in Adult Offspring: Implication of Glutamate Excitotoxicity and Oxidative Stress. Toxicology, 387, 67-80.
https://doi.org/10.1016/j.tox.2017.06.001

[10]  Chang, E.T., Odo, N.U. and Acquavella, J.F. (2022) Systematic Literature Review of the Epidemiology of Glyphosate and Neurological Outcomes. International Archives of Occupational and Environmental Health, 96, 1-26.
https://doi.org/10.1007/s00420-022-01878-0

[11]  Costas-Ferreira, C., Durán, R. and Faro, L.R.F. (2022) Toxic Effects of Glyphosate on the Nervous System: A Systematic Review. International Journal of Molecular Sciences, 23, Article 4605.
https://doi.org/10.3390/ijms23094605

[12]  Rubio-Tomás, T. and Tavernarakis, N. (2022) Lipid Metabolism and Ageing in Caenorhabditis Elegans: A Complex Interplay. Biogerontology, 23, 541-557.
https://doi.org/10.1007/s10522-022-09989-4

[13]  NIH National Institute on Aging (2022) Parkinson’s Disease: Causes, Symptoms, and Treatments. National Institutes of Health.
https://www.nia.nih.gov/health/parkinsons-disease/parkinsons-disease-causes-symptoms-and-treatments

[14]  Kouli, A., Torsney, K.M. and Kuan, W.L. (2018) Parkinson’s Disease: Etiology, Neuropathology, and Pathogenesis. Parkinson’s Disease: Pathogenesis and Clinical Aspects. Brisbane (AU): Codon Publications.
https://doi.org/10.15586/codonpublications.parkinsonsdisease.2018.ch1

[15]  Goetz, C.G., Emre, M. and Dubois, B. (2009) Parkinson’s Disease Dementia: Definitions, Guidelines, and Research Perspectives in Diagnosis. Annals of Neurology, 64, S81-S92.
https://doi.org/10.1002/ana.21455

[16]  Chinta, S.J. and Andersen, J.K. (2005) Dopaminergic Neurons. The International Journal of Biochemistry & Cell Biology, 37, 942-946.
https://doi.org/10.1016/j.biocel.2004.09.009

[17]  Damier, P., Hirsch, E.C., Agid, Y. and Graybiel, A.M. (1999) The Substantia Nigra of the Human Brain. Brain, 122, 1437-1448.
https://doi.org/10.1093/brain/122.8.1437

[18]  Stefanis, L. (2011) α-Synuclein in Parkinson’s Disease. Cold Spring Harbor Perspectives in Medicine, 2, a009399.
https://doi.org/10.1101/cshperspect.a009399

[19]  Shults, C.W. (2006) Lewy Bodies. Proceedings of the National Academy of Sciences of the United States of America, 103, 1661-1668.
https://doi.org/10.1073/pnas.0509567103

[20]  Spillantini, M.G., Schmidt, M.L., Lee, V.M.Y., Trojanowski, J.Q., Jakes, R. and Goedert, M. (1997) α-Synuclein in Lewy Bodies. Nature, 388, 839-840.
https://doi.org/10.1038/42166

[21]  Gruden, M.A., Davydova, T.V., Narkevich, V.B., Fomina, V.G., Wang, C., Kudrin, V.S., et al. (2014) Intranasal Administration of α-Synuclein Aggregates: A Parkinson’s Disease Model with Behavioral and Neurochemical Correlates. Behavioural Brain Research, 263, 158-168.
https://doi.org/10.1016/j.bbr.2014.01.017

[22]  Hernández-Plata, I., Giordano, M., Díaz-Muñoz, M. and Rodríguez, V.M. (2015) The Herbicide Glyphosate Causes Behavioral Changes and Alterations in Dopaminergic Markers in Male Sprague-Dawley Rat. NeuroToxicology, 46, 79-91.
https://doi.org/10.1016/j.neuro.2014.12.001

[23]  Pu, Y., Chang, L., Qu, Y., Wang, S., Tan, Y., Wang, X., et al. (2020) Glyphosate Exposure Exacerbates the Dopaminergic Neurotoxicity in the Mouse Brain after Repeated Administration of MPTP. Neuroscience Letters, 730, Article ID: 135032.
https://doi.org/10.1016/j.neulet.2020.135032

[24]  Costas-Ferreira, C., Durán, R. and Faro, L.F. (2023) Neurotoxic Effects of Exposure to Glyphosate in Rat Striatum: Effects and Mechanisms of Action on Dopaminergic Neurotransmission. Pesticide Biochemistry and Physiology, 193, Article ID: 105433.
https://doi.org/10.1016/j.pestbp.2023.105433

[25]  Zhang, S., Song, Y., Wang, M., Xiao, G., Gao, F., Li, Z., et al. (2018) Real-Time Simultaneous Recording of Electrophysiological Activities and Dopamine Overflow in the Deep Brain Nuclei of a Non-Human Primate with Parkinson’s Disease Using Nano-Based Microelectrode Arrays. Microsystems & Nanoengineering, 4, Article No. 17070.
https://doi.org/10.1038/micronano.2017.70

[26]  Costas-Ferreira, C., Silva, A.C.d.J., Hage-Melim, L.I.d.S. and Faro, L.R.F. (2023) Role of Voltage-Dependent Calcium Channels on the Striatal in vivo Dopamine Release Induced by the Organophosphorus Pesticide Glyphosate. Environmental Toxicology and Pharmacology, 104, Article ID: 104285.
https://doi.org/10.1016/j.etap.2023.104285

[27]  Caballero, M., Amiri, S., Denney, J.T., Monsivais, P., Hystad, P. and Amram, O. (2018) Estimated Residential Exposure to Agricultural Chemicals and Premature Mortality by Parkinson’s Disease in Washington State. International Journal of Environmental Research and Public Health, 15, Article 2885.
https://doi.org/10.3390/ijerph15122885

[28]  American Psychiatric Association (2022) Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition.
https://doi.org/10.1176/appi.books.9780890425596

[29]  Bayer, T.A., Cappai, R., Masters, C.L., Beyreuther, K. and Multhaup, G. (1999) It All Sticks Together—The App-Related Family of Proteins and Alzheimer’s Disease. Molecular Psychiatry, 4, 524-528.
https://doi.org/10.1038/sj.mp.4000552

[30]  Liu, C., Kanekiyo, T., Xu, H. and Bu, G. (2013) Apolipoprotein E and Alzheimer Disease: Risk, Mechanisms and Therapy. Nature Reviews Neurology, 9, 106-118.
https://doi.org/10.1038/nrneurol.2012.263

[31]  Plantone, D., Pardini, M., Righi, D., Manco, C., Colombo, B.M. and De Stefano, N. (2023) The Role of TNF-α in Alzheimer’s Disease: A Narrative Review. Cells, 13, Article 54.
https://doi.org/10.3390/cells13010054

[32]  Murphy, M.P. and LeVine, H. (2010) Alzheimer’s Disease and the Amyloid-β Peptide. Journal of Alzheimers Disease, 19, 311-323.
https://doi.org/10.3233/jad-2010-1221

[33]  Qing, H., Li, N., Liu, K., Qiu, Y., Zhang, H. and Nakanishi, H. (2019) Mutations of β-Amyloid Precursor Protein Alter the Consequence of Alzheimer’s Disease Pathogenesis. Neural Regeneration Research, 14, 658-665.
https://doi.org/10.4103/1673-5374.247469

[34]  Masuda, A., Kobayashi, Y., Kogo, N., Saito, T., Saido, T.C. and Itohara, S. (2016) Cognitive Deficits in Single App Knock-In Mouse Models. Neurobiology of Learning and Memory, 135, 73-82.
https://doi.org/10.1016/j.nlm.2016.07.001

[35]  Sienski, G., Narayan, P., Bonner, J.M., Kory, N., Boland, S., Arczewska, A.A., et al. (2021) APOE4 Disrupts Intracellular Lipid Homeostasis in Human iPSC-Derived Glia. Science Translational Medicine, 13, eaaz4564.
https://doi.org/10.1126/scitranslmed.aaz4564

[36]  Hartman, R.E., Wozniak, D.F., Nardi, A., Olney, J.W., Sartorius, L. and Holtzman, D.M. (2001) Behavioral Phenotyping of GFAP-apoE3 and-apoE4 Transgenic Mice: apoE4 Mice Show Profound Working Memory Impairments in the Absence of Alzheimer’s-Like Neuropathology. Experimental Neurology, 170, 326-344.
https://doi.org/10.1006/exnr.2001.7715

[37]  Schmitt, J., Paradis, A., Boucher, M., Andrieu, L., Barnéoud, P. and Rondi-Reig, L. (2021) Flexibility as a Marker of Early Cognitive Decline in Humanized Apolipoprotein E ε4 (ApoE4) Mice. Neurobiology of Aging, 102, 129-138.
https://doi.org/10.1016/j.neurobiolaging.2021.01.013

[38]  McAlpine, F.E., Lee, J., Harms, A.S., Ruhn, K.A., Blurton-Jones, M., Hong, J., et al. (2009) Inhibition of Soluble TNF Signaling in a Mouse Model of Alzheimer’s Disease Prevents Pre-Plaque Amyloid-Associated Neuropathology. Neurobiology of Disease, 34, 163-177.
https://doi.org/10.1016/j.nbd.2009.01.006

[39]  Winstone, J.K., Pathak, K.V., Winslow, W., Piras, I.S., White, J., Sharma, R., et al. (2022) Glyphosate Infiltrates the Brain and Increases Pro-Inflammatory Cytokine TNFα: Implications for Neurodegenerative Disorders. Journal of Neuroinflammation, 19, Article No. 193.
https://doi.org/10.1186/s12974-022-02544-5

[40]  Martínez, M., Rodríguez, J., Lopez-Torres, B., Martínez, M., Martínez-Larrañaga, M., Maximiliano, J., et al. (2020) Use of Human Neuroblastoma SH-SY5Y Cells to Evaluate Glyphosate-Induced Effects on Oxidative Stress, Neuronal Development and Cell Death Signaling Pathways. Environment International, 135, Article ID: 105414.
https://doi.org/10.1016/j.envint.2019.105414

[41]  Hsiao, C.C., Yang, A., Wang, C. and Lin, C. (2023) Association between Glyphosate Exposure and Cognitive Function, Depression, and Neurological Diseases in a Representative Sample of US Adults: NHANES 2013-2014 Analysis. Environmental Research, 237, Article ID: 116860.
https://doi.org/10.1016/j.envres.2023.116860

[42]  Mayo Clinic (2023) Seizures.
https://www.mayoclinic.org/diseases-conditions/seizure/symptoms-causes/syc-20365711

[43]  Jewett, B.E. and Sharma, S. (2023) GABA. StatPearls.
https://www.ncbi.nlm.nih.gov/books/NBK513311/

[44]  Macdonald, R.L., Kang, J. and Gallagher, M.J. (2010) Mutations in GABAA Receptor Subunits Associated with Genetic Epilepsies. The Journal of Physiology, 588, 1861-1869.
https://doi.org/10.1113/jphysiol.2010.186999

[45]  Petroff, O.A.C., Rothman, D.L., Behar, K.L. and Mattson, R.H. (1996) Low Brain GABA Level Is Associated with Poor Seizure Control. Annals of Neurology, 40, 908-911.
https://doi.org/10.1002/ana.410400613

[46]  Naraine, A.S., Aker, R., Sweeney, I., Kalvey, M., Surtel, A., Shanbhag, V., et al. (2022) Roundup and Glyphosate’s Impact on GABA to Elicit Extended Proconvulsant Behavior in Caenorhabditis Elegans. Scientific Reports, 12, Article No. 13655.
https://doi.org/10.1038/s41598-022-17537-w

[47]  Park, S., Kim, D., Park, S., Gil, H. and Hong, S. (2017) Seizures in Patients with Acute Pesticide Intoxication, with a Focus on Glufosinate Ammonium. Human & Experimental Toxicology, 37, 331-337.
https://doi.org/10.1177/0960327117705427

[48]  Requena, M., Parrón, T., Navarro, A., García, J., Ventura, M.I., Hernández, A.F., et al. (2018) Association between Environmental Exposure to Pesticides and Epilepsy. NeuroToxicology, 68, 13-18.
https://doi.org/10.1016/j.neuro.2018.07.002

[49]  Komiya, Y. and Habas, R. (2008) Wnt Signal Transduction Pathways. Organogenesis, 4, 68-75.
https://doi.org/10.4161/org.4.2.5851

[50]  Sowers, L.P., Loo, L., Wu, Y., Campbell, E., Ulrich, J.D., Wu, S., et al. (2013) Erratum: Disruption of the Non-Canonical WNT Gene PRICKLE2 Leads to Autism-Like Behaviors with Evidence for Hippocampal Synaptic Dysfunction. Molecular Psychiatry, 19, 742-742.
https://doi.org/10.1038/mp.2013.143

[51]  Das, J. and Geetha, R. (2023) Corpus Callosum Agenesis. StatPearls.
https://www.ncbi.nlm.nih.gov/books/NBK540986/

[52]  Lau, Y.C., Hinkley, L.B.N., Bukshpun, P., Strominger, Z.A., Wakahiro, M.L.J., Baron-Cohen, S., et al. (2012) Autism Traits in Individuals with Agenesis of the Corpus Callosum. Journal of Autism and Developmental Disorders, 43, 1106-1118.
https://doi.org/10.1007/s10803-012-1653-2

[53]  Zhang, J. and An, J. (2007) Cytokines, Inflammation, and Pain. International Anesthesiology Clinics, 45, 27-37.
https://doi.org/10.1097/aia.0b013e318034194e

[54]  Nadeem, A., Ahmad, S.F., Al-Harbi, N.O., AL-Ayadhi, L.Y., Sarawi, W., Attia, S.M., et al. (2022) Imbalance in Pro-Inflammatory and Anti-Inflammatory Cytokines Milieu in B Cells of Children with Autism. Molecular Immunology, 141, 297-304.
https://doi.org/10.1016/j.molimm.2021.12.009

[55]  Beversdorf, D.Q., Stevens, H.E., Margolis, K.G. and Van de Water, J. (2020) Prenatal Stress and Maternal Immune Dysregulation in Autism Spectrum Disorders: Potential Points for Intervention. Current Pharmaceutical Design, 25, 4331-4343.
https://doi.org/10.2174/1381612825666191119093335

[56]  Pu, Y., Yang, J., Chang, L., Qu, Y., Wang, S., Zhang, K., et al. (2020) Maternal Glyphosate Exposure Causes Autism-Like Behaviors in Offspring through Increased Expression of Soluble Epoxide Hydrolase. Proceedings of the National Academy of Sciences of the United States of America, 117, 11753-11759.
https://doi.org/10.1073/pnas.1922287117

[57]  Pu, Y., Ma, L., Shan, J., Wan, X., Hammock, B.D. and Hashimoto, K. (2021) Autism-Like Behaviors in Male Juvenile Offspring after Maternal Glyphosate Exposure. Clinical Psychopharmacology and Neuroscience, 19, 554-558.
https://doi.org/10.9758/cpn.2021.19.3.554

[58]  von Ehrenstein, O.S., Ling, C., Cui, X., Cockburn, M., Park, A.S., Yu, F., et al. (2019) Prenatal and Infant Exposure to Ambient Pesticides and Autism Spectrum Disorder in Children: Population Based Case-Control Study. BMJ, 364, L962.
https://doi.org/10.1136/bmj.l962

[59]  Coullery, R.P., Ferrari, M.E. and Rosso, S.B. (2016) Neuronal Development and Axon Growth Are Altered by Glyphosate through a WNT Non-Canonical Signaling Pathway. NeuroToxicology, 52, 150-161.
https://doi.org/10.1016/j.neuro.2015.12.004

[60]  Coullery, R., Pacchioni, A.M. and Rosso, S.B. (2020) Exposure to Glyphosate during Pregnancy Induces Neurobehavioral Alterations and Downregulation of Wnt5a-CaMKII Pathway. Reproductive Toxicology, 96, 390-398.
https://doi.org/10.1016/j.reprotox.2020.08.006

[61]  Alarcón, R., Rivera, O.E., Ingaramo, P.I., Tschopp, M.V., Dioguardi, G.H., Milesi, M.M., et al. (2020) Neonatal Exposure to a Glyphosate-Based Herbicide Alters the Uterine Differentiation of Prepubertal Ewe Lambs. Environmental Pollution, 265, Article ID: 114874.
https://doi.org/10.1016/j.envpol.2020.114874

[62]  Appleton, J. (2018) The Gut-Brain Axis: Influence of Microbiota on Mood and Mental Health. Integrative Medicine, 17, 28-32.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6469458/pdf/imcj-17-28.pdf

[63]  Dechartres, J., Pawluski, J.L., Gueguen, M., Jablaoui, A., Maguin, E., Rhimi, M., et al. (2019) Glyphosate and Glyphosate-Based Herbicide Exposure during the Peripartum Period Affects Maternal Brain Plasticity, Maternal Behaviour and Microbiome. Journal of Neuroendocrinology, 31, e12731.
https://doi.org/10.1111/jne.12731

[64]  Del Castilo, I., Neumann, A.S., Lemos, F.S., De Bastiani, M.A., Oliveira, F.L., Zimmer, E.R., et al. (2022) Lifelong Exposure to a Low-Dose of the Glyphosate-Based Herbicide Roundup® Causes Intestinal Damage, Gut Dysbiosis, and Behavioral Changes in Mice. International Journal of Molecular Sciences, 23, Article 5583.
https://doi.org/10.3390/ijms23105583

[65]  Ruuskanen, S., Rainio, M.J., Gómez-Gallego, C., Selenius, O., Salminen, S., Collado, M.C., et al. (2020) Glyphosate-Based Herbicides Influence Antioxidants, Reproductive Hormones and Gut Microbiome But Not Reproduction: A Long-Term Experiment in an Avian Model. Environmental Pollution, 266, Article ID: 115108.
https://doi.org/10.1016/j.envpol.2020.115108

[66]  Hu, J., Lesseur, C., Miao, Y., Manservisi, F., Panzacchi, S., Mandrioli, D., et al. (2021) Low-Dose Exposure of Glyphosate-Based Herbicides Disrupt the Urine Metabolome and Its Interaction with Gut Microbiota. Scientific Reports, 11, Article No. 3265.
https://doi.org/10.1038/s41598-021-82552-2

[67]  Mesnage, R., Teixeira, M., Mandrioli, D., Falcioni, L., Ducarmon, Q.R., Zwittink, R.D., et al. (2021) Use of Shotgun Metagenomics and Metabolomics to Evaluate the Impact of Glyphosate or Roundup MON 52276 on the Gut Microbiota and Serum Metabolome of Sprague-Dawley Rats. Environmental Health Perspectives, 129, Article ID: 017005.
https://doi.org/10.1289/ehp6990

[68]  Chávez-Reyes, J., Gutiérrez-Reyes, C.D., Hernández-Cuellar, E. and Marichal-Cancino, B.A. (2024) Neurotoxicity of Glyphosate: Focus on Molecular Mechanisms Probably Associated with Alterations in Cognition and Behavior. Environmental Toxicology and Pharmacology, 106, Article ID: 104381.
https://doi.org/10.1016/j.etap.2024.104381

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133