全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Phenotypic Characterization and QTL/Gene Identification for Internode Number and Length Related Traits in Maize

DOI: 10.4236/ajps.2024.157033, PP. 467-485

Keywords: Maize (Zea mays L.), Internode No., Average Internode Length, Phenotypic Characterization, Candidate Gene Discovery

Full-Text   Cite this paper   Add to My Lib

Abstract:

Internode number and length are the foundation to constitute plant height, ear height and the above-ground spatial structure of maize plant. In this study, segregating populations were constructed between EHel with extremely low ear height and B73. Through the SNP-based genotyping and phenotypic characterization, 13 QTL distributed on the chromosomes (Chrs) of Chr1, Chr2, Chr5-Chr8 were detected for four traits of internode no. above ear (INa), average internode length above ear (ILaa), internode no. below ear (INb), and average internode length below ear (ILab). Phenotypic variation explained (PVE) by a single QTL ranged from 6.82% (qILab2-2) to 12.99% (qILaa5). Zm00001d016823 within the physical region of qILaa5, the major QTL for ILaa with the largest PVE was determined as the candidate through the genomic annotation and sequence alignment between EHel and B73. Product of Zm00001d016823 was annotated as a WEB family protein homogenous to At1g75720. qRT-PCR assay showed that Zm00001d016823 highly expressed within the tissue of internode, exhibiting statistically higher expression levels among internodes of IN4 to IN7 in EHel than those in B73 (P < 0.01), implying a negative regulating trend to internode elongation in maize. Functional dissection of Zm00001d016823 might provide novel insight into molecular mechanism beyond phytohormones controlling internode development in maize.

References

[1]  Zhou, Z., Zhang, C., Lu, X., Wang, L., Hao, Z., Li, M., et al. (2018) Dissecting the Genetic Basis Underlying Combining Ability of Plant Height Related Traits in Maize. Frontiers in Plant Science, 9, Article No. 1117.
https://doi.org/10.3389/fpls.2018.01117
[2]  Zhao, Y., Zhang, S., Lv, Y., Ning, F., Cao, Y., Liao, S., et al. (2022) Optimizing Ear-Plant Height Ratio to Improve Kernel Number and Lodging Resistance in Maize (Zea mays L.). Field Crops Research, 276, Article ID: 108376.
https://doi.org/10.1016/j.fcr.2021.108376
[3]  Stubbs, C.J., Kunduru, B., Bokros, N., Verges, V., Porter, J., Cook, D.D., et al. (2023) Moving toward Short Stature Maize: The Effect of Plant Height on Maize Stalk Lodging Resistance. Field Crops Research, 300, Article ID: 109008.
https://doi.org/10.1016/j.fcr.2023.109008
[4]  Wang, W., Guo, W., Le, L., Yu, J., Wu, Y., Li, D., et al. (2023) Integration of High-Throughput Phenotyping, GWAS, and Predictive Models Reveals the Genetic Architecture of Plant Height in Maize. Molecular Plant, 16, 354-373.
https://doi.org/10.1016/j.molp.2022.11.016
[5]  Peiffer, J.A., Romay, M.C., Gore, M.A., Flint-Garcia, S.A., Zhang, Z., Millard, M.J., et al. (2014) The Genetic Architecture of Maize Height. Genetics, 196, 1337-1356.
https://doi.org/10.1534/genetics.113.159152
[6]  Paciorek, T., Chiapelli, B.J., Wang, J.Y., Paciorek, M., Yang, H., Sant, A., et al. (2022) Targeted Suppression of Gibberellin Biosynthetic Genes ZmGA20ox3 and ZmGA20ox5 Produces a Short Stature Maize Ideotype. Plant Biotechnology Journal, 20, 1140-1153.
https://doi.org/10.1111/pbi.13797
[7]  Fan, Y. and Li, Y. (2019) Molecular, Cellular and Yin-Yang Regulation of Grain Size and Number in Rice. Molecular Breeding, 39, Article No. 163.
https://doi.org/10.1007/s11032-019-1078-0
[8]  Yuan, Z., Persson, S. and Zhang, D. (2020) Molecular and Genetic Pathways for Optimizing Spikelet Development and Grain Yield. aBIOTECH, 1, 276-292.
https://doi.org/10.1007/s42994-020-00026-x
[9]  Mukherjee, A., Gaurav, A.K., Singh, S., Yadav, S., Bhowmick, S., Abeysinghe, S., et al. (2022) The Bioactive Potential of Phytohormones: A Review. Biotechnology Reports, 35, e00748.
https://doi.org/10.1016/j.btre.2022.e00748
[10]  Dong, Z., Xiao, Y., Govindarajulu, R., Feil, R., Siddoway, M.L., Nielsen, T., et al. (2019) The Regulatory Landscape of a Core Maize Domestication Module Controlling Bud Dormancy and Growth Repression. Nature Communications, 10, Article No. 3810.
https://doi.org/10.1038/s41467-019-11774-w
[11]  Castorina, G. and Consonni, G. (2020) The Role of Brassinosteroids in Controlling Plant Height in Poaceae: A Genetic Perspective. International Journal of Molecular Sciences, 21, Article No. 1191.
https://doi.org/10.3390/ijms21041191
[12]  Cowling, C.L., Dash, L. and Kelley, D.R. (2023) Roles of Auxin Pathways in Maize Biology. Journal of Experimental Botany, 74, 6989-6999.
https://doi.org/10.1093/jxb/erad297
[13]  Li, Q., Liu, N. and Wu, C. (2023) Novel Insights into Maize (Zea mays) Development and Organogenesis for Agricultural Optimization. Planta, 257, Article No. 94.
https://doi.org/10.1007/s00425-023-04126-y
[14]  Cassani, E., Bertolini, E., Cerino Badone, F., Landoni, M., Gavina, D., Sirizzotti, A., et al. (2009) Characterization of the First Dominant Dwarf Maize Mutant Carrying a Single Amino Acid Insertion in the VHYNP Domain of the Dwarf8 Gene. Molecular Breeding, 24, 375-385.
https://doi.org/10.1007/s11032-009-9298-3
[15]  Chen, Y., Hou, M., Liu, L., Wu, S., Shen, Y., Ishiyama, K., et al. (2014) The Maize DWARF1 encodes a Gibberellin 3-Oxidase and Is Dual Localized to the Nucleus and Cytosol. Plant Physiology, 166, 2028-2039.
https://doi.org/10.1104/pp.114.247486
[16]  Lawit, S.J., Wych, H.M., Xu, D., Kundu, S. and Tomes, D.T. (2010) Maize DELLA Proteins Dwarf Plant8 and Dwarf Plant9 as Modulators of Plant Development. Plant and Cell Physiology, 51, 1854-1868.
https://doi.org/10.1093/pcp/pcq153
[17]  Winkler, R.G. and Helentjaris, T. (1995) The Maize Dwarf3 Gene Encodes a Cytochrome P450-Mediated Early Step in Gibberellin Biosynthesis. The Plant Cell, 7, 1307-1317.
https://doi.org/10.1105/tpc.7.8.1307
[18]  Li, S., Sun, Z., Sang, Q., Qin, C., Kong, L., Huang, X., et al. (2023) Soybean Reduced Internode 1 Determines Internode Length and Improves Grain Yield at Dense Planting. Nature Communications, 14, Article No. 7939.
https://doi.org/10.1038/s41467-023-42991-z
[19]  Sun, C., Liu, Y., Li, G., Chen, Y., Li, M., Yang, R., et al. (2024) ZmCYP90D1 Regulates Maize Internode Development by Modulating Brassinosteroid-Mediated Cell Division and Growth. The Crop Journal, 12, 58-67.
https://doi.org/10.1016/j.cj.2023.11.002
[20]  Wang, X., Ren, Z., Xie, S., Li, Z., Zhou, Y. and Duan, L. (2024) Jasmonate Mimic Modulates Cell Elongation by Regulating Antagonistic bHLH Transcription Factors via Brassinosteroid Signaling. Plant Physiology, kiae217.
https://doi.org/10.1093/plphys/kiae217
[21]  Le, L., Guo, W., Du, D., Zhang, X., Wang, W., Yu, J., et al. (2022) A Spatiotemporal Transcriptomic Network Dynamically Modulates Stalk Development in Maize. Plant Biotechnology Journal, 20, 2313-2331.
https://doi.org/10.1111/pbi.13909
[22]  Wu, L., Zheng, Y., Jiao, F., Wang, M., Zhang, J., Zhang, Z., et al. (2022) Identification of Quantitative Trait Loci for Related Traits of Stalk Lodging Resistance Using Genome-Wide Association Studies in Maize (Zea mays L.). BMC Genomic Data, 23, Article No. 76.
https://doi.org/10.1186/s12863-022-01091-5
[23]  Wang, X., Chen, Y., Sun, X., Li, J., Zhang, R., Jiao, Y., et al. (2022) Characteristics and Candidate Genes Associated with Excellent Stalk Strength in Maize (Zea mays L.). Frontiers in Plant Science, 13, Article ID: 957566.
https://doi.org/10.3389/fpls.2022.957566
[24]  Gul, H., Qian, M., G. Arabzai, M., Huang, T., Ma, Q., Xing, F., et al. (2022) Discovering Candidate Chromosomal Regions Linked to Kernel Size-Related Traits via QTL Mapping and Bulked Sample Analysis in Maize. Phyton, 91, 1429-1443.
https://doi.org/10.32604/phyton.2022.019842
[25]  Shi, Y.S., Li, Y., Wang, T.Y. and Song, Y.C. (2006) Description and Data Standard for Maize (Zea mays L.). China Agriculture Press. (In Chinese)
[26]  Norman, P.E., Kamara, L., Beah, A., Gborie, K.S., Saquee, F.S., Kanu, S.A., et al. (2024) Genetic and Agronomic Parameter Estimates of Growth, Yield and Related Traits of Maize (Zea mays L.) under Different Rates of Nitrogen Fertilization. American Journal of Plant Sciences, 15, 274-291.
https://doi.org/10.4236/ajps.2024.154020
[27]  Meng, L., Li, H., Zhang, L. and Wang, J. (2015) QTL Icimapping: Integrated Software for Genetic Linkage Map Construction and Quantitative Trait Locus Mapping in Biparental Populations. The Crop Journal, 3, 269-283.
https://doi.org/10.1016/j.cj.2015.01.001
[28]  McCouch, S., Chao, Y.G., Yano, M., Paul, E., Blinstrub, M., Morishima, H. and Kinoshita, T. (1997) Report on QTL Nomenclature. Rice Genetics Newsletter, 14, 111-131.
[29]  Stuber, C.W., Lincoln, S.E., Wolff, D.W., Helentjaris, T. and Lander, E.S. (1992) Identification of Genetic Factors Contributing to Heterosis in a Hybrid from Two Elite Maize Inbred Lines Using Molecular Markers. Genetics, 132, 823-839.
https://doi.org/10.1093/genetics/132.3.823
[30]  Walley, J.W., Sartor, R.C., Shen, Z., Schmitz, R.J., Wu, K.J., Urich, M.A., et al. (2016) Integration of Omic Networks in a Developmental Atlas of Maize. Science, 353, 814-818.
https://doi.org/10.1126/science.aag1125
[31]  Xiao, Q., Huang, T., Zhou, C., Chen, W., Cha, J., Wei, X., et al. (2023) Characterization of Subunits Encoded by SnRK1 and Dissection of Combinations among These Subunits in Sorghum (Sorghum bicolor L.). Journal of Integrative Agriculture, 22, 642-649.
https://doi.org/10.1016/j.jia.2022.08.068
[32]  Livak, K.J. and Schmittgen, T.D. (2001) Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2-ΔΔCT Method. Methods, 25, 402-408.
https://doi.org/10.1006/meth.2001.1262
[33]  Khush, G.S. (2001) Green Revolution: The Way Forward. Nature Reviews Genetics, 2, 815-822.
https://doi.org/10.1038/35093585
[34]  Briggs, J. (2009) Green Revolution. In: Kitchin, R. and Thrift, N., Eds., International Encyclopedia of Human Geography, Elsevier, 634-638.
[35]  Pingali, P.L. (2012) Green Revolution: Impacts, Limits, and the Path Ahead. Proceedings of the National Academy of Sciences, 109, 12302-12308.
https://doi.org/10.1073/pnas.0912953109
[36]  Stokstad, E. (2023) High Hopes for Short Corn. Science, 382, 364-367.
https://doi.org/10.1126/science.adl5302
[37]  Shah, A.N., Tanveer, M., Rehman, A.u., Anjum, S.A., Iqbal, J. and Ahmad, R. (2016) Lodging Stress in Cereal—Effects and Management: An Overview. Environmental Science and Pollution Research, 24, 5222-5237.
https://doi.org/10.1007/s11356-016-8237-1
[38]  Xue, J., Xie, R., Zhang, W., Wang, K., Hou, P., Ming, B., et al. (2017) Research Progress on Reduced Lodging of High-Yield and-Density Maize. Journal of Integrative Agriculture, 16, 2717-2725.
https://doi.org/10.1016/s2095-3119(17)61785-4
[39]  Zhang, P., Gu, S., Wang, Y., Xu, C., Zhao, Y., Liu, X., et al. (2023) The Relationships between Maize (Zea mays L.) Lodging Resistance and Yield Formation Depend on Dry Matter Allocation to Ear and Stem. The Crop Journal, 11, 258-268.
https://doi.org/10.1016/j.cj.2022.04.020
[40]  Li, W., Ge, F., Qiang, Z., Zhu, L., Zhang, S., Chen, L., et al. (2019) Maize ZmRPH1 Encodes a Microtubule-Associated Protein That Controls Plant and Ear Height. Plant Biotechnology Journal, 18, 1345-1347.
https://doi.org/10.1111/pbi.13292
[41]  Kodama, Y., Suetsugu, N., Kong, S. and Wada, M. (2010) Two Interacting Coiled-Coil Proteins, WEB1 and PMI2, Maintain the Chloroplast Photorelocation Movement Velocity in Arabidopsis. Proceedings of the National Academy of Sciences, 107, 19591-19596.
https://doi.org/10.1073/pnas.1007836107
[42]  Kodama, Y., Suetsugu, N. and Wada, M. (2011) Novel Protein-Protein Interaction Family Proteins Involved in Chloroplast Movement Response. Plant Signaling & Behavior, 6, 483-490.
https://doi.org/10.4161/psb.6.4.14784
[43]  Luesse, D.R., DeBlasio, S.L. and Hangarter, R.P. (2006) Plastid Movement Impaired 2, a New Gene Involved in Normal Blue-Light-Induced Chloroplast Movements in Arabidopsis. Plant Physiology, 141, 1328-1337.
https://doi.org/10.1104/pp.106.080333

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413