全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

PCR-HRM for Genomic Surveillance of SARS-CoV-2: A Variant Detection Tool in C?te d’Ivoire, West Africa

DOI: 10.4236/ajmb.2024.143013, PP. 166-185

Keywords: Genomic Surveillance, SARS-CoV-2, PCR-HRM, Variants, C?te d’Ivoire

Full-Text   Cite this paper   Add to My Lib

Abstract:

The rise of new viruses, like SARS-CoV-2 causing the COVID-19 outbreak, along with the return of antibiotic resistance in harmful bacteria, demands a swift and efficient reaction to safeguard the health and welfare of the global population. It is crucial to have effective measures for prevention, intervention, and monitoring in place to address these evolving and recurring risks, ensuring public health and international security. In countries with limited resources, utilizing recombinant mutation plasmid technology in conjunction with PCR-HRM could help differentiate the existence of novel variants. cDNA synthesis was carried out on 8 nasopharyngeal samples following viral RNA extraction. The P1 segment of the SARS-CoV-2 Spike S protein was amplified via conventional PCR. Subsequently, PCR products were ligated with the pGEM-T Easy vector to generate eight recombinant SARS-CoV-2 plasmids. Clones containing mutations were sequenced using Sanger sequencing and analyzed through PCR-HRM. The P1 segment of the S gene from SARS-CoV-2 was successfully amplified, resulting in 8 recombinant plasmids generated from the 231 bp fragment. PCR-HRM analysis of these recombinant plasmids differentiated three variations within the SARS-CoV-2 plasmid population, each displaying distinct melting temperatures. Sanger sequencing identified mutations A112C, G113T, A114G, G214T, and G216C on the P1 segment, validating the PCR-HRM findings of the variations. These mutations led to the detection of L452R or L452M and F486V protein mutations within the protein sequence of the Omicron variant of SARS-CoV-2. In summary, PCR-HRM is a vital and affordable tool for distinguishing SARS-CoV-2 variants utilizing recombinant plasmids as controls.

References

[1]  Hoffman, S.A. and Maldonado, Y.A. (2024) Emerging and Re-Emerging Pediatric Viral Diseases: A Continuing Global Challenge. Pediatric Research, 95, 480-487.
https://doi.org/10.1038/s41390-023-02878-7

[2]  Williams, R., Kemp, V., Porter, K., Healing, T. and Drury, J. (2024) Major Incidents, Pandemics and Mental Health: The Psychosocial Aspects of Health Emergencies, Incidents, Disasters and Disease Outbreaks. Cambridge University Press.
https://doi.org/10.1017/9781009019330

[3]  Dabbu Kumar, J., Jian, L., Rong, H. and Hua, Z. (2018) Emerging and Reemerging Human Viral Diseases. Annals of Microbiology and Research, 2, 31-44.
https://doi.org/10.36959/958/567

[4]  Gedif Meseret, A. (2020) Emerging and Re-Emerging Viral Diseases: The Case of Coronavirus Disease-19 (COVID-19). International Journal of Virology and AIDS, 7, 67-80.
https://doi.org/10.23937/2469-567X/1510067

[5]  Van Duin, D. and Paterson, D.L. (2020) Multidrug Resistant Bacteria in the Community: An Update. Infectious Disease Clinics of North America, 34, 709-722.
https://doi.org/10.1016/j.idc.2020.08.002

[6]  Marques, R.Z., Da Silva Nogueira, K., de Oliveira Tomaz, A.P., Juneau, P., Wang, S. and Gomes, M.P. (2024) Emerging Threat: Antimicrobial Resistance Proliferation during Epidemics—A Case Study of the SARS-CoV-2 Pandemic in South Brazil. Journal of Hazardous Materials, 470, Article 134202.
https://doi.org/10.1016/j.jhazmat.2024.134202

[7]  Gagnaire, J., Verhoeven, P., Denis, C., Grattard, F., Carricajo, A., Pozzetto, B. and Berthelot, P. (2015) Prise En Charge Des Bactéries Multirésistantes Aux Antibiotiques Dans Les Établissements De Santé. Feuillets De Biologie, 322, 13-20.
[8]  Maamar, B., Abdelmalek, R., Messadi, A.A. and Thabet, L. (2019) Étude Épidémio-Clinique Des Infections à Entérobactéries Productrices De CarbapénéMases Chez Les Brûlés. Annals of Burns and Fire Disasters, 32, 10-16.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6588333/
[9]  Choi, Y.K. (2021) Emerging and Re-Emerging Fatal Viral Diseases. Experimental & Molecular Medicine, 53, 711-712.
https://doi.org/10.1038/s12276-021-00608-9

[10]  Nordmann, P. and Poirel, L. (2014) Résistances aux antibiotiques émergentes et importantes chez les bactéries Gram négatif: épidémiologie, aspects théoriques et détection. Revue Médicale Suisse, 10, 902-907.
https://doi.org/10.53738/REVMED.2014.10.427.0902

[11]  Kieny, M.P., Rottingen, J.-A. and Farrar, J. (2016) The Need for Global R&D Coordination for Infectious Diseases with Epidemic Potential. The Lancet, 388, 460-461.
https://doi.org/10.1016/S0140-6736(16)31152-7

[12]  Zumla, A., Dar, O., Kock, R., Muturi, M., Ntoumi, F., Kaleebu, P., Eusebio, M., Mfinanga, S., Bates, M., Mwaba, P., Ansumana, R., Khan, M., Alagaili, A.N., Cotten, M., Azhar, E.I., Maeurer, M., Ippolito, G. and Petersen, E. (2016) Taking Forward a ‘One Health’ Approach for Turning the Tide Against the Middle East Respiratory Syndrome Coronavirus and Other Zoonotic Pathogens with Epidemic Potential. International Journal of Infectious Diseases, 47, 5-9.
https://doi.org/10.1016/j.ijid.2016.06.012

[13]  Mcentire, C.R.S., Song, K.-W., McInnis, R.P., Rhee, J.Y., Young, M., Williams, E., Wibecan, L.L., Nolan, N., Nagy, A.M., Gluckstein, J., Mukerji, S.S. and Mateen, F.J. (2021) Neurologic Manifestations of the World Health Organization’s List of Pandemic and Epidemic Diseases. Frontiers in Neurology, 12, 1-22.
https://doi.org/10.3389/fneur.2021.634827

[14]  Dortet, L., Bonnin, R. and Naas, T. (2017) Impact du Séquençage D’adn à Haut Débit sur la Surveillance des Épidémies de Bactéries Multi-Résistantes aux Antibiotiques. Feuillets de Biologie, 354, 1-13.
[15]  Beviere, M., Reissier, S., Penven, M., Dejoies, L., Guerin, F., Cattoir, V. and Piau, C. (2023) The Role of Next-Generation Sequencing (NGS) in the Management of Tuberculosis: Practical Review for Implementation in Routine. Pathogens, 12, 978-1001.
https://doi.org/10.3390/pathogens12080978

[16]  Marchand, S., Rodriguez, C., and Woerther, P.-L. (2024) Séquençage à haut débit pour le diagnostic en maladies infectieuses: exemple de la métagénomique shotgun dans les infections du système nerveux central. La Revue de Médecine Interne, 45, 166-173.
https://doi.org/10.1016/j.revmed.2023.05.002

[17]  Quick, J., Loman, N.J., Duraffour, S., et al. (2016) Real-Time, Portable Genome Sequencing for Ebola Surveillance. Nature, 530, 228-232.
https://doi.org/10.1038/nature16996

[18]  Faria, N.R., Azevedo, R.D.S.D.S., et al. (2016) Zika Virus in the Americas: Early Epidemiological and Genetic Findings. Science, 352, 345-349.
https://doi.org/10.1126/science.aaf5036

[19]  Faria, N.R., Quick, J., Claro, I.M., et al. (2017) Establishment and Cryptic Transmission of Zika Virus in Brazil and the Americas. Nature, 546, 406-410.
https://doi.org/10.1038/nature22401

[20]  Adelino, T.É.R., Giovanetti, M., et al. (2021) Field and Classroom Initiatives for Portable Sequence-Based Monitoring of Dengue Virus in Brazil. Nature Communications, 12, 2296-2308.
https://doi.org/10.1038/s41467-021-22607-0

[21]  Grubaugh, N.D., Faria, N.R., Andersen, K.G. and Pybus, O.G. (2018) Genomic Insights into Zika Virus Emergence and Spread. Cell, 172, 1160-1162.
https://doi.org/10.1016/j.cell.2018.02.027

[22]  Aoki, A., Adachi, H., Mori, Y., Ito, M., Sato, K., Okuda, K., Sakakibara, T., Okamoto, Y. and Jinno, H. (2022) Discrimination of SARS-CoV-2 Omicron Sublineages BA.1 and BA.2 Using a High-Resolution Melting-Based Assay: A Pilot Study. Microbiology Spectrum, 10, e0136722.
[23]  WHO COVID-19 dashboard.
https://
COVID19.Who.Int
[24]  Wu, H.S., Zhang, Q., Wu, H.L., Tian, F., Cui, B., Qi, Z., Xu, X., Zhang, X. and Wang, H. (2020) Tackling COVID-19: Insights from the Qinghai Province Plague Prevention and Control (PPC) Model. Biosafety and Health, 2, 187-192.
https://doi.org/10.1016/j.bsheal.2020.08.001

[25]  Ganguli, A., Mostafa, A., Berger, J., Aydin, M.Y., Sun, F., de Ramirez, S.A.S., Valera, E., Cunningham, B.T., King, W.P. and Bashir, R. (2020) Rapid Isothermal Amplification and Portable Detection System for SARS-CoV-2. Proceedings of the National Academy of Sciences of the United States of America, 117, 22727-22735.
https://doi.org/10.1073/pnas.2014739117

[26]  Sun, L., Xiu, L., Zhang, C., Xiao, Y., Li, Y., Zhang, L., Ren, L. and Peng, J. (2022) Detection and Classification of SARS-CoV-2 Using High-Resolution Melting Analysis. Microbial Biotechnology, 15, 1883-1894.
https://doi.org/10.1111/1751-7915.14027

[27]  Wang, R., Hozumi, Y., Yin, C. and Wei, G.-W. (2020) Mutations on COVID-19 Diagnostic Targets. Genomics, 112, 5204-5213.
https://doi.org/10.1016/j.ygeno.2020.09.028

[28]  Xiao, M., Liu, X., et al. (2020) Multiple Approaches for Massively Parallel Sequencing of SARS-CoV-2 Genomes Directly from Clinical Samples. Genome Medicine, 12, 57-72.
https://doi.org/10.1186/s13073-020-00751-4

[29]  OMS (2021) Séquençage Génomique du SRAS-CoV-2: Un Guide de Mise en Œuvre Pour un Impact Maximal sur la Santé Publique.
[30]  Wang, J., Hawken, S.E., et al. (2022) Collaboration between Clinical and Academic Laboratories for Sequencing SARS-CoV-2 Genomes. Journal of Clinical Microbiology, 60, e01288-21.
https://doi.org/10.1128/jcm.01288-21

[31]  Helmy, M., Awad, M. and Mosa, K.A. (2016) Limited Resources of Genome Sequencing in Developing Countries: Challenges and Solutions. Applied & Translational Genomics, 9, 15-19.
https://doi.org/10.1016/j.atg.2016.03.003

[32]  Diaz-Garcia, H., Guzmán-Ortiz, A.L., Angeles-Floriano, T., Parra-Ortega, I., López-Martínez, B., Martínez-Saucedo, M., Aquino-Jarquin, G., Sánchez-Urbina, R., Quezada, H. and Granados-Riveron, J.T. (2021) Genotyping of the Major SARS-CoV-2 Clade by Short-Amplicon High-Resolution Melting (SA-HRM) Analysis. Genes, 12, 531-541.
https://doi.org/10.3390/genes12040531

[33]  Koshikawa, T. and Miyoshi, H. (2022) High-Resolution Melting Analysis to Discriminate Between the SARS-CoV-2 Omicron Variants BA.1 and BA.2. Biochemistry and Biophysics Reports, 31, 101306-101311.
https://doi.org/10.1016/j.bbrep.2022.101306

[34]  Vossen, R.H.A.M., Aten, E., Roos, A. and Den Dunnen, J.T. (2009) High-Resolution Melting Analysis (HRMA): More than Just Sequence Variant Screening. Human Mutation, 30, 860-866.
https://doi.org/10.1002/humu.21019

[35]  Tamburro, M. and Ripabelli, G. (2017) High Resolution Melting as a Rapid, Reliable, Accurate and Cost-Effective Emerging Tool for Genotyping Pathogenic Bacteria and Enhancing Molecular Epidemiological Surveillance: A Comprehensive Review of the Literature. Annali di Igiene: Medicina Preventiva e di Comunità, 29, 293-316.
[36]  Coulibaly, T.G.S., Gbonon, V.M., Osseni, A., Diplo, F.B., Coulibaly, D.N., Sylla, A., et al. (2022) First Detection of KRAS Mutation in Colorectal Cancer Patients in Côte d’Ivoire. European Journal of Biomedical Research, 1, 16-20.
https://doi.org/10.24018/ejbiomed.2022.1.5.30

[37]  Aoki, A., Mori, Y., Okamoto, Y. and Jinno, H. (2021) Development of a Genotyping Platform for SARS-CoV-2 Variants Using High-Resolution Melting Analysis. Journal of Infection and Chemotherapy, 27, 1336-1341.
https://doi.org/10.1016/j.jiac.2021.06.007

[38]  Sacks, D., Ledwaba, J., Morris, L. and Hunt, G.M. (2016) Rapid Detection of Common HIV-1 Drug Resistance Mutations by Use of High-Resolution Melting Analysis and Unlabeled Probes. Journal of Clinical Microbiology, 55, 122-133.
https://doi.org/10.1128/JCM.01291-16

[39]  Kiani, S.J., Ramshini, M., Bokharaei-Salim, F., Donyavi, T., Eshrati, B., Khoshmirsafa, M., Ghorbani, S., Tavakoli, A., Monavari, S.H., Ghalejoogh, Z.Y. and Abbasi-Kolli, M. (2023) High Resolution Melting Curve Analysis for Rapid Detection of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Variants. Acta Virologica, 67, 91-98.
https://doi.org/10.4149/av_2023_109

[40]  Silva, J.L.D., Leite, G.G.S., Bastos, G.M., et al. (2013) Plasmid-Based Controls to Detect rpoB Mutations in Mycobacterium Tuberculosis by Quantitative Polymerase Chain Reaction-High-Resolution Melting. Memorias do Instituto Oswaldo Cruz, 108, 106-109.
https://doi.org/10.1590/S0074-02762013000100017

[41]  Yi, C., Sun, X., Ye, J., Ding, L., Liu, M., Yang, Z., Lu, X., Zhang, Y., Ma, L., Gu, W., Qu, A., Xu, J., Shi, Z., Ling, Z. and Sun, B. (2020) Key Residues of the Receptor Binding Motif in the Spike Protein of SARS-CoV-2 That Interact with ACE2 and Neutralizing Antibodies. Cellular & Molecular Immunology, 17, 621-630.
https://www.nature.com/articles/S41423-020-0458-Z

[42]  Candido, K.L., Eich, C.R., et al. (2022) Spike Protein of SARS-CoV-2 Variants: A Brief Review and Practical Implications. Brazilian Journal of Microbiology, 53, 1133-1157.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8994061/
[43]  Mittal, A. and Verma, V. (2021) Connections between Biomechanics and Higher Infectivity: A Tale of the D614G Mutation in the SARS-CoV-2 Spike Protein. Signal Transduction and Targeted Therapy, 6, Article No. 11.
https://www.nature.com/articles/s41392-020-00439-6
[44]  Sylla, A., Kakou-Ngazoa, S., Bla, B.K., Coulibaly, T.G.S., Ouattara, Z., Ouattara, Y.K., Addablah, A.A.Y., Kouamé-Sina, M.S., Kouakou, V.-L., Coulibaly, D.N. and Dosso, M. (2023) Amplification of SARS-CoV2 Viral Markers in Côte d’Ivoire. European Journal of Biomedical Research, 2, 8-13.
https://doi.org/10.24018/ejbiomed.2023.2.4.80

[45]  Rutledge, R.G. and Stewart, D. (2008) Critical Evaluation of Methods Used to Determine Amplification Efficiency Refutes the Exponential Character of Real-Time PCR. BMC Molecular Biology, 9, 96-107.
https://bmcmolbiol.biomedcentral.com/articles/10.1186/1471-2199-9-96
[46]  Laamiri, N., Aouini, R., Marnissi, B., Ghram, A. and Hmila, I. (2018) A Multiplex Real-Time RT-PCR for Simultaneous Detection of Four Most Common Avian Respiratory. Virology, 515, 29-37.
https://www.sciencedirect.com/science/article/pii/S0042682217304002
[47]  Nutz, S., Döll, K. and Karlovsky, P. (2011) Determination of the LOQ in Real-Time PCR by Receiver Operating Characteristic Curve Analysis: Application to qPCR Assays for Fusarium verticillioides and F. proliferatum. Analytical and Bioanalytical Chemistry, 401, 717-726.
https://doi.org/10.1007/s00216-011-5089-x

[48]  De Brun, M.L., Cosme, B., Petersen, M., Alvarez, I., Folgueras-Flatschart, A., Flatschart, R., Panei, C.J. and Puentes, R. (2022) Development of a Droplet Digital PCR Assay for Quantification of the Proviral Load of Bovine Leukemia Virus. Journal of Veterinary Diagnostic Investigation, 34, 439-447.
https://doi.org/10.1177/10406387221085581

[49]  Fertig, T.E., Chitoiu, L., Marta, D.S., Ionescu, V.-S., Cismasiu, V.B., Radu, E., Angheluta, G., Dobre, M., Serbanescu, A., Hinescu, M.E. and Gherghiceanu, M. (2022) Vaccine MRNA Can Be Detected in Blood at 15 Days Post-Vaccination. Biomedicines, 10, Article 1538.
https://www.mdpi.com/2227-9059/10/7/1538
[50]  Gomez-Martinez, J., Henry, S., Tuaillon, E., Van de Perre, P., Fournier-Wirth, C., Foulongne, V. and Brès, J.-C. (2022) Novel Lateral Flow-Based Assay for Simple and Visual Detection of SARS-CoV-2 Mutations. Frontiers in Cellular and Infection Microbiology, 12.
https://doi.org/10.3389/fcimb.2022.902914
[51]  Abdulnoor, M., Eshaghi, A., Perusini, S.J., Broukhanski, G., Corbeil, A., Cronin, K., Fittipaldi, N., Forbes, J.D., Guthrie, J.L., Kus, J.V., Li, Y., Majury, A., Mallo, G.V., Mazzulli, T., Melano, R.G., Olsha, R., Sullivan, A., Tran, V., Patel, S.N., Allen, V.G. and Gubbay, J.B. (2022) Real-Time RT-PCR Allelic Discrimination Assay for Detection of N501Y Mutation in the Spike Protein of SARS-CoV-2 Associated with B.1.1.7 Variant of Concern. Microbiology Spectrum, 10, E00681-21.
[52]  Anoh, E.A., Wayoro, O., Monemo, P., Belarbi, E., Sachse, A., Wilkinson, E., San, J. E., Leendertz, F.H., Diané, B., Calvignac-Spencer, S., Akoua-Koffi, C. and Schubert, G. (2023) Subregional Origins of Emerging SARS-CoV-2 Variants during the Second Pandemic Wave in Côte d’Ivoire. Virus Genes, 59, 370-376.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10023306/
[53]  Shi, S., Zhu, H., Xia, X., et al. (2019) Vaccine Adjuvants: Understanding the Structure and Mechanism of Adjuvanticity. Vaccine, 37, 3167-3178.
https://www.sciencedirect.com/science/article/abs/pii/S0264410X19305298
[54]  Mohammadi, M., Shayestehpour, M. and Mirzaei, H. (2021) The Impact of Spike Mutated Variants of SARS-CoV-2 Alpha, Beta, Gamma, Delta, and Lambda on the Efficacy of Subunit Recombinant Vaccines. Brazilian Journal of Infectious Diseases, 25, 101606-101614.
https://www.scielo.br/j/bjid/a/dYxfThwdjJcqkbySTcx6xsq/?lang=en
[55]  Aoki, A., Mori, Y., Okamoto, Y. and Jinno, H. (2022) Simultaneous Screening of SARS-CoV-2 Omicron and Delta Variants Using High-Resolution Melting Analysis. Biological and Pharmaceutical Bulletin, 45, 394-396.
https://doi.org/10.1248/bpb.b21-01081

[56]  Cao, Y., Yisimayi, A., Jian, F., et al. (2022) BA.2.12.1, BA.4 and BA.5 Escape Antibodies Elicited by Omicron Infection. Nature, 608, 593-602.
https://doi.org/10.1038/s41586-022-04980-y

[57]  Motozono, C., Toyoda, M., Zahradnik, J., et al. (2021) SARS-CoV-2 Spike L452R Variant Evades Cellular Immunity and Increases Infectivity. Cell Host & Microbe, 29, 1124-1136.E11.
https://linkinghub.elsevier.com/retrieve/pii/S1931312821002845
[58]  Tchesnokova, V., Kulasekara, H., et al. (2021) Acquisition of the L452R Mutation in the ACE2-Binding Interface of Spike Protein Triggers Recent Massive Expansion of SARS-CoV-2 Variants. Journal of Clinical Microbiology, 59.
https://journals.asm.org/doi/full/10.1128/jcm.00921-21
[59]  Deshpande, A., Harris, B.D., Martinez-Sobrido, L., Kobie, J.J. and Walter, M.R. (2021) Epitope Classification and RBD Binding Properties of Neutralizing Antibodies Against SARS-CoV-2 Variants of Concern. Frontiers in Immunology, 12, 1-14.
https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2021.691715/full

[60]  Almalki, S.S., Izhari, M.A., Alyahyawi, H.E., Alatawi, S.K., Klufah, F., Ahmed, W.A. and Alharbi, R. (2023) Mutational Analysis of Circulating Omicron SARS-CoV-2 Lineages in the Al-Baha Region of Saudi Arabia. Journal of Multidisciplinary Healthcare, 16, 2117-2136.
https://www.tandfonline.com/doi/full/10.2147/JMDH.S419859
[61]  de Souza Andrade, A., Freitas, E.F., de Castro Barbosa, E., et al. (2023) Potential Use of High-Resolution Melting Analyses for SARS-CoV-2 Genomic Surveillance Utilisation Potentielle D’Analyses DE Fusion à Haute RÉSolution Pour La Surveillance GÉNomique Du SRAS-CoV-2. Journal of Virological Methods, 317, 114742-114748.
https://www.sciencedirect.com/science/article/pii/S0166093423000678
[62]  Diotallevi, A., Buffi, G., et al. (2023) Rapid Monitoring of SARS-CoV-2 Variants of Concern through High-Resolution Melt Analysis. Scientific Reports, 13, 21598-21607.
https://www.nature.com/articles/s41598-023-48929-1
[63]  Wang, Q., Guo, Y., Iketani, S., Nair, M.S., et al. (2022) Antibody Evasion by SARS-CoV-2 Omicron Subvariants BA.2.12.1, BA.4 and BA.5. Nature, 608, 603-608.
https://doi.org/10.1038/s41586-022-05053-w

[64]  Barnes, C.O., Jette, C.A., et al. (2020) SARS-CoV-2 Neutralizing Antibody Structures Inform Therapeutic Strategies. Nature, 588, 682-687.
https://doi.org/10.1038/s41586-020-2852-1

[65]  Planas, D., Veyer, D., et al. (2021) Reduced Sensitivity of SARS-CoV-2 Variant Delta to Antibody Neutralization. Nature, 596, 276-280.
https://doi.org/10.1038/s41586-021-03777-9

[66]  Kimura, I., Kosugi, Y., et al. (2022) The SARS-CoV-2 Lambda Variant Exhibits Enhanced Infectivity and Immune Resistance. Cell Reports, 38, 110218-110225.
https://doi.org/10.1016/j.celrep.2021.110218

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413