全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

双参数化动力学暗能量对中微子质量的影响
The Impact of Two-Parametrization Dynamical Dark Energy on the Neutrino Mass

DOI: 10.12677/aas.2024.123004, PP. 34-43

Keywords: 对数形式参数化,振荡形式参数化,动力学暗能量,中微子质量,观测限制
The Logarithmic Parameterization
, The Oscillatory Parameterization, Dynamical Dark Energy, Neutrino Mass, Observational Constraints

Full-Text   Cite this paper   Add to My Lib

Abstract:

中微子绝对质量的测量和暗能量本质属性的探究是宇宙学前沿的两个重要科学问题。中微子振荡现象表明中微子具有非零质量,KATRIN实验给出的最新结果mν=0.8?eV,宇宙学观测限制测出中微子质量总和的上限为∑mv≤0.1?eV。本文联合不同的主流观测数据,包括宇宙微波背景辐射数据、重子声学振荡数据以及Ia型超新星数据,探究两种双参数化动力学暗能量模型中中微子质量的拟合情况。这两种参数化分别为对数形式参数化和振荡形式参数化。相较于Chevallier-Polarski-Linder参数化,它们可以克服状态方程的演化发散问题(z→?1),成功探测暗能量在全宇宙中的演化。我们发现对数形式参数化和振荡形式参数化暗能量增大了中微子质量和的拟合值上限,且扩大限制宇宙学模型的观测数据样本可以压低中微子质量拟合值的上限。
The measurement of the absolute mass of neutrinos and the investigation of the intrinsic properties of dark energy are two important scientific issues at the forefront of cosmology. The neutrino oscillation phenomenon shows that neutrinos have non-zero mass, and the latest results given by the KATRIN experimentmν=0.8?eV, the upper limit of the cosmological observational limit on the total of measured neutrino masses is∑mv≤0.1?eV. In this paper, we combine different mainstream observational data, including cosmic microwave background radiation data, baryon acoustic oscillation data, and type Ia supernova data, to explore the fit of neutrino masses in two kinds two parametrizations dynamical dark energy models. These two parameterizations are the logarithmic parameterization and the oscillatory parameterization, respectively. Compared to the Chevallier-Polarski-Linder parameterization, they can overcome the evolutionary divergence problem of the equation of state (z→?1) and successfully probe the evolution of dark energy in the whole universe. We find that the logarithmic parameterization and the oscillatory parameterization of the dark energy increase the upper limit of the fitted values of the total of neutrino mass and that expanding the sample of observational data limiting the cosmological model depresses the upper limit of the fitted values of the neutrino mass.

References

[1]  Fukuda, S., Fukuda, Y., Ishitsuka, M., Itow, Y., Kajita, T., Kameda, J., et al. (2001) Solar8 B and Hep Neutrino Measurements from 1258 Days of Super-Kamiokande Data. Physical Review Letters, 86, 5651-5655.
https://doi.org/10.1103/physrevlett.86.5651
[2]  Ahmad, Q.R., Allen, R.C., Andersen, T.C., D.Anglin, J., Barton, J.C., Beier, E.W., et al. (2002) Direct Evidence for Neutrino Flavor Transformation from Neutral-Current Interactions in the Sudbury Neutrino Observatory. Physical Review Letters, 89, Article 011301.
https://doi.org/10.1103/physrevlett.89.011301
[3]  Gribov, V. and Pontecorvo, B. (1969) Neutrino Astronomy and Lepton Charge. Physics Letters B, 28, 493-496.
https://doi.org/10.1016/0370-2693(69)90525-5
[4]  肖雨奇, 刘泽坤, 陈绍龙. 中微子和暗物质物理的关联研究[J]. 中国科学: 物理学、力学、天文学, 2023, 53(9): 49-67.
[5]  Esteban, I., Gonzalez-Garcia, M.C., Maltoni, M., Schwetz, T. and Zhou, A. (2020) The Fate of Hints: Updated Global Analysis of Three-Flavor Neutrino Oscillations. Journal of High Energy Physics, 2020, Article No. 178.
https://doi.org/10.1007/jhep09(2020)178
[6]  Aker, M., Beglarian, A., Behrens, J., Berlev, A., Besserer, U., Bieringer, B., et al. (2022) Direct Neutrino-Mass Measurement with Sub-Electronvolt Sensitivity. Nature Physics, 18, 160-166.
https://doi.org/10.1038/s41567-021-01463-1
[7]  Alam, S., Aubert, M., Avila, S., Balland, C., Bautista, J.E., Bershady, M.A., et al. (2021) Completed SDSS-IV Extended Baryon Oscillation Spectroscopic Survey: Cosmological Implications from Two Decades of Spectroscopic Surveys at the Apache Point Observatory. Physical Review D, 103, Article 083533.
https://doi.org/10.1103/physrevd.103.083533
[8]  Palanque-Delabrouille, N., Yèche, C., Sch?neberg, N., Lesgourgues, J., Walther, M., Chabanier, S., et al. (2020) Hints, Neutrino Bounds, and WDM Constraints from SDSS DR14 Lyman-Α and Planck Full-Survey Data. Journal of Cosmology and Astroparticle Physics, 2020, Article 38.
https://doi.org/10.1088/1475-7516/2020/04/038
[9]  Abbott, T.M.C., Aguena, M., Alarcon, A., Allam, S., Alves, O., Amon, A., et al. (2022) Dark Energy Survey Year 3 Results: Cosmological Constraints from Galaxy Clustering and Weak Lensing. Physical Review D, 105, Article 023520.
https://doi.org/10.1103/physrevd.105.023520
[10]  Hinshaw, G., Larson, D., Komatsu, E., Spergel, D.N., Bennett, C.L., Dunkley, J., et al. (2013) Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results. The Astrophysical Journal Supplement Series, 208, Article 19.
https://doi.org/10.1088/0067-0049/208/2/19
[11]  Sievers, J.L., Hlozek, R.A., Nolta, M.R., Acquaviva, V., Addison, G.E., Ade, P.A.R., et al. (2013) The Atacama Cosmology Telescope: Cosmological Parameters from Three Seasons of Data. Journal of Cosmology and Astroparticle Physics, 2013, Article 60.
https://doi.org/10.1088/1475-7516/2013/10/060
[12]  Hou, Z., et al. (2014) Constraints on Cosmology from the Cosmic Microwave Background Power Pectrum of the 2500 Deg2 SPT-SZ Survey. Astrophys Journal, 782, Article 74.
https://doi.org/10.1088/0004-637X/782/2/74
[13]  Riess, A.G., Filippenko, A.V., Challis, P., Clocchiatti, A., Diercks, A., Garnavich, P.M., et al. (1998) Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. The Astronomical Journal, 116, 1009-1038.
https://doi.org/10.1086/300499
[14]  Perlmutter, S., Aldering, G., Goldhaber, G., Knop, R.A., Nugent, P., Castro, P.G., et al. (1999) Measurements of Ω and Λ from 42 High‐Redshift Supernovae. The Astrophysical Journal, 517, 565-586.
https://doi.org/10.1086/307221
[15]  Frieman, J.A., Turner, M.S. and Huterer, D. (2008) Dark Energy and the Accelerating Universe. Annual Review of Astronomy and Astrophysics, 46, 385-432.
https://doi.org/10.1146/annurev.astro.46.060407.145243
[16]  Weinberg, D.H., Mortonson, M.J., Eisenstein, D.J., Hirata, C., Riess, A.G. and Rozo, E. (2013) Observational Probes of Cosmic Acceleration. Physics Reports, 530, 87-255.
https://doi.org/10.1016/j.physrep.2013.05.001
[17]  Caldwell, R.R., Dave, R. and Steinhardt, P.J. (1998) Cosmological Imprint of an Energy Component with General Equation of State. Physical Review Letters, 80, 1582-1585.
https://doi.org/10.1103/physrevlett.80.1582
[18]  Sean, M. (2003) Can the Dark Energy Equation-of-State Parameter w Be Less Than ?1? Physical Review D, 68, Article 023509.
https://doi.org/10.1103/PhysRevD.68.023509
[19]  Guo, Z., Piao, Y., Zhang, X. and Zhang, Y. (2005) Cosmological Evolution of a Quintom Model of Dark Energy. Physics Letters B, 608, 177-182.
https://doi.org/10.1016/j.physletb.2005.01.017
[20]  Spergel, D.N., Verde, L., Peiris, H.V., Komatsu, E., Nolta, M.R., Bennett, C.L., et al. (2003) First‐Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters. The Astrophysical Journal Supplement Series, 148, 175-194.
https://doi.org/10.1086/377226
[21]  Bennett, C.L., Halpern, M., Hinshaw, G., Jarosik, N., Kogut, A., Limon, M., et al. (2003) First‐Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Preliminary Maps and Basic Results. The Astrophysical Journal Supplement Series, 148, 1-27.
https://doi.org/10.1086/377253
[22]  Tegmark, M., Strauss, M.A., Blanton, M.R., Abazajian, K., Dodelson, S., Sandvik, H., et al. (2004) Cosmological Parameters from SDSS and WMAP. Physical Review D, 69, Article 103501.
https://doi.org/10.1103/physrevd.69.103501
[23]  Abazajian, K., Adelman-McCarthy, J.K., Agüeros, M.A., Allam, S.S., Anderson, K.S.J., Anderson, S.F., et al. (2004) The Second Data Release of the Sloan Digital Sky Survey. The Astronomical Journal, 128, 502-512.
https://doi.org/10.1086/421365
[24]  Motta, V., García-Aspeitia, M.A., Hernández-Almada, A., Maga?a, J. and Verdugo, T. (2021) Taxonomy of Dark Energy Models. Universe, 7, Article 163.
https://doi.org/10.3390/universe7060163
[25]  Alves, J., Bertout, C., Combes, F., Ferrara, A., Forveille, T., Guillot, T., et al. (2014) Planck 2013 Results. Astronomy & Astrophysics, 571, Article E1.
https://doi.org/10.1051/0004-6361/201425195
[26]  Alves, J., Combes, F., Ferrara, A., Forveille, T. and Shore, S. (2016) Planck 2015 Results. Astronomy & Astrophysics, 594, Article E1.
https://doi.org/10.1051/0004-6361/201629543
[27]  Sahni, V. and Starobinsky, A. (2000) The Case for a Positive Cosmological Λ-Term. International Journal of Modern Physics D, 9, 373-443.
https://doi.org/10.1142/s0218271800000542
[28]  Bean, R., Carroll, S. and Trodden, M. (2005) Insights into Dark Energy: Interplay between Theory and Observation. arXiv: astro-ph/0510059.
https://doi.org/10.48550/arXiv.astro-ph/0510059
[29]  Guo, R., Zhang, J. and Zhang, X. (2018) Exploring Neutrino Mass and Mass Hierarchy in the Scenario of Vacuum Energy Interacting with Cold Dark Matter. Chinese Physics C, 42, Article 095103.
https://doi.org/10.1088/1674-1137/42/9/095103
[30]  Geng, C., Lee, C., Myrzakulov, R., Sami, M. and Saridakis, E.N. (2016) Observational Constraints on Varying Neutrino-Mass Cosmology. Journal of Cosmology and Astroparticle Physics, 2016, Article 49.
https://doi.org/10.1088/1475-7516/2016/01/049
[31]  Chen, Y. and Xu, L. (2016) Galaxy Clustering, CMB and Supernova Data Constraints on Φ CDM Model with Massive Neutrinos. Physics Letters B, 752, 66-75.
https://doi.org/10.1016/j.physletb.2015.11.022
[32]  Vagnozzi, S., Dhawan, S., Gerbino, M., Freese, K., Goobar, A. and Mena, O. (2018) Constraints on the Sum of the Neutrino Masses in Dynamical Dark Energy Models with w(z) ≥ ?1 Are Tighter than Those Obtained in ΛCDM. Physical Review D, 98, Article 083501.
https://doi.org/10.1103/physrevd.98.083501
[33]  Riess, A.G., Casertano, S., Yuan, W., Macri, L.M. and Scolnic, D. (2019) Large Magellanic Cloud Cepheid Standards Provide a 1% Foundation for the Determination of the Hubble Constant and Stronger Evidence for Physics beyond ΛCDM. The Astrophysical Journal, 876, Article 85.
https://doi.org/10.3847/1538-4357/ab1422
[34]  Wang, L., Zhang, X., Zhang, J. and Zhang, X. (2018) Impacts of Gravitational-Wave Standard Siren Observation of the Einstein Telescope on Weighing Neutrinos in Cosmology. Physics Letters B, 782, 87-93.
https://doi.org/10.1016/j.physletb.2018.05.027
[35]  Zhao, M., Li, Y., Zhang, J. and Zhang, X. (2017) Constraining Neutrino Mass and Extra Relativistic Degrees of Freedom in Dynamical Dark Energy Models Using Planck 2015 Data in Combination with Low-Redshift Cosmological Probes: Basic Extensions to ΛCDM Cosmology. Monthly Notices of the Royal Astronomical Society, 469, 1713-1724.
https://doi.org/10.1093/mnras/stx978
[36]  Zhang, X. (2016) Impacts of Dark Energy on Weighing Neutrinos after Planck 2015. Physical Review D, 93, Article 083011.
https://doi.org/10.1103/physrevd.93.083011
[37]  Li, H. and Zhang, X. (2012) Constraining Dynamical Dark Energy with a Divergence-Free Parametrization in the Presence of Spatial Curvature and Massive Neutrinos. Physics Letters B, 713, 160-164.
https://doi.org/10.1016/j.physletb.2012.06.030
[38]  Zhang, J., Li, Y. and Zhang, X. (2014) Cosmological Constraints on Neutrinos after BICEP2. The European Physical Journal C, 74, Article No. 2954.
https://doi.org/10.1140/epjc/s10052-014-2954-8
[39]  Zhang, J., Zhao, M., Li, Y. and Zhang, X. (2015) Neutrinos in the Holographic Dark Energy Model: Constraints from Latest Measurements of Expansion History and Growth of Structure. Journal of Cosmology and Astroparticle Physics, 2015, Article 38.
https://doi.org/10.1088/1475-7516/2015/04/038
[40]  Wang, S., Wang, Y., Xia, D. and Zhang, X. (2016) Impacts of Dark Energy on Weighing Neutrinos: Mass Hierarchies Considered. Physical Review D, 94, Article 083519.
https://doi.org/10.1103/physrevd.94.083519
[41]  Choudhury, S.R. and Hannestad, S. (2020) Updated Results on Neutrino Mass and Mass Hierarchy from Cosmology with Planck 2018 Likelihoods. Journal of Cosmology and Astroparticle Physics, 2020, Article 37.
https://doi.org/10.1088/1475-7516/2020/07/037
[42]  Loureiro, A., Cuceu, A., Abdalla, F.B., Moraes, B., Whiteway, L., McLeod, M., et al. (2019) Upper Bound of Neutrino Masses from Combined Cosmological Observations and Particle Physics Experiments. Physical Review Letters, 123, Article 081301.
https://doi.org/10.1103/physrevlett.123.081301
[43]  Yang, W., Nunes, R.C., Pan, S. and Mota, D.F. (2017) Effects of Neutrino Mass Hierarchies on Dynamical Dark Energy Models. Physical Review D, 95, Article 103522.
https://doi.org/10.1103/physrevd.95.103522
[44]  Huang, Q., Wang, K. and Wang, S. (2016) Constraints on the Neutrino Mass and Mass Hierarchy from Cosmological Observations. The European Physical Journal C, 76, Article No. 489.
https://doi.org/10.1140/epjc/s10052-016-4334-z
[45]  Chevallier, M. and Polarski, D. (2001) Accelerating Universes with Scaling Dark Matter. International Journal of Modern Physics D, 10, 213-223.
https://doi.org/10.1142/s0218271801000822
[46]  Linder, E.V. (2003) Exploring the Expansion History of the Universe. Physical Review Letters, 90, Article 091301.
https://doi.org/10.1103/physrevlett.90.091301
[47]  Astier, P. (2001) Can Luminosity Distance Measurements Probe the Equation of State of Dark Energy? Physics Letters B, 500, 8-15.
https://doi.org/10.1016/s0370-2693(01)00072-7
[48]  Yao, T., Guo, R. and Zhao, X. (2023) Constraining Neutrino Mass in Dynamical Dark Energy Cosmologies with the Logarithm Parametrization and the Oscillating Parametrization. Journal of High Energy Physics, Gravitation and Cosmology, 9, 1044-1061.
https://doi.org/10.4236/jhepgc.2023.94076
[49]  Li, Y., Wang, S., Li, X. and Zhang, X. (2013) Holographic Dark Energy in a Universe with Spatial Curvature and Massive Neutrinos: A Full Markov Chain Monte Carlo Exploration. Journal of Cosmology and Astroparticle Physics, 2013, Article 33.
https://doi.org/10.1088/1475-7516/2013/02/033
[50]  Pan, S., Yang, W. and Paliathanasis, A. (2020) Imprints of an Extended Chevallier-Polarski-Linder Parametrization on the Large Scale of Our Universe. The European Physical Journal C, 80, Article No. 274.
https://doi.org/10.1140/epjc/s10052-020-7832-y
[51]  Valentino, E.D., Gariazzo, S., Mena, O. and Vagnozzi, S. (2020) Soundness of Dark Energy Properties. Journal of Cosmology and Astroparticle Physics, 2020, Article 45.
https://doi.org/10.1088/1475-7516/2020/07/045
[52]  Cárdenas, V.H., Cruz, M., Lepe, S. and Salgado, P. (2021) Reconstructing Mimetic Cosmology. Physics of the Dark Universe, 31, Article 100775.
https://doi.org/10.1016/j.dark.2021.100775
[53]  Rezaei, M., Peracaula, J.S. and Malekjani, M. (2021) Cosmographic Approach to Running Vacuum Dark Energy Models: New Constraints Using BAOs and Hubble Diagrams at Higher Redshifts. Monthly Notices of the Royal Astronomical Society, 509, 2593-2608.
https://doi.org/10.1093/mnras/stab3117
[54]  Wang, H. and Piao, Y. (2022) Testing Dark Energy after Pre-Recombination Early Dark Energy. Physics Letters B, 832, Article 137244.
https://doi.org/10.1016/j.physletb.2022.137244
[55]  Aghanim, N., Akrami, Y., Ashdown, M., et al. (2018) Planck 2018 Results. III. High Frequency Instrument Data Processing and Frequency Maps. Astronomy & Astrophysics, 641, Article No. A3.
https://doi.org/10.1051/0004-6361/201832909
[56]  Aghanim, N., Akrami, Y., Ashdown, M., et al. (2020) Planck 2018 Results. VI. Cosmological Parameters. Astronomy & Astrophysics, 641, A6.
https://doi.org/10.1051/0004-6361/201833910
[57]  Dodelson, S. (2003) Modern Cosmology. Academic Press.
[58]  Perkovi?, D. and ?tefan?i?, H. (2020) Barotropic Fluid Compatible Parametrizations of Dark Energy. The European Physical Journal C, 80, Article No. 629.
https://doi.org/10.1140/epjc/s10052-020-8199-9
[59]  Pacif, S.K.J. (2020) Dark Energy Models from a Parametrization of H: A Comprehensive Analysis and Observational Constraints. The European Physical Journal Plus, 135, Article No. 792.
https://doi.org/10.1140/epjp/s13360-020-00769-y
[60]  Cárdenas, V.H., Cruz, M., Lepe, S. and Salgado, P. (2021) Reconstructing Mimetic Cosmology. Physics of the Dark Universe, 31, Article 100775.
https://doi.org/10.1016/j.dark.2021.100775
[61]  Ren, X., Wong, T.H.T., Cai, Y. and Saridakis, E.N. (2021) Data-Driven Reconstruction of the Late-Time Cosmic Acceleration with f(T) Gravity. Physics of the Dark Universe, 32, Article 100812.
https://doi.org/10.1016/j.dark.2021.100812
[62]  Rezaei, M. and Peracaula, J.S. (2022) Running Vacuum versus Holographic Dark Energy: A Cosmographic Comparison. The European Physical Journal C, 82, Article No. 765.
https://doi.org/10.1140/epjc/s10052-022-10653-x
[63]  Yang, W., Giarè, W., Pan, S., Di Valentino, E., Melchiorri, A. and Silk, J. (2023) Revealing the Effects of Curvature on the Cosmological Models. Physical Review D, 107, Article 063509.
https://doi.org/10.1103/physrevd.107.063509
[64]  Jassal, H.K., Bagla, J.S. and Padmanabhan, T. (2005) Observational Constraints on Low Redshift Evolution of Dark Energy: How Consistent Are Different Observations? Physical Review D, 72, Article 103503.
https://doi.org/10.1103/physrevd.72.103503

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413