全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

可移动式微型反应堆假设事故下辐射剂量计算
Radiation Dose Calculation for the Mobile Micro Reactor under Hypothetical Accidents

DOI: 10.12677/nst.2024.123020, PP. 190-203

Keywords: 微型反应堆,cosRMC,HotSpot,总有效剂量
Micro Reactor
, cosRMC, HotSpot, Total Effective Dose

Full-Text   Cite this paper   Add to My Lib

Abstract:

小微型反应堆具有固有安全性高、运行特性简单、长期持续供能、易于模块化和运输特性良好等特点,受到格外关注。本文采用蒙特卡罗程序cosRMC对可移动式微型反应堆HOPE (HOt Pipe cooled nuclear Energy system)运行10年后堆芯积存量进行了计算,参考IAEA推荐和美国NRC导则1.183规定的事故下放射性物质释放份额计算事故源项,采用美国劳伦斯利弗莫尔国家实验室(LLNL) HotSpot3.1程序进行放射性核素大气扩散模拟计算,分析了不同大气稳定度、事故释放高度、地形、逆温层高度、风速和降雨量对该反应堆事故情景下放射性物质的扩散和公众辐射剂量的影响。保守气象条件下总有效剂量(Total Effective Dose, TED)计算结果表明:HOPE运行10年后在假设事故下将会有大量放射性物质被释放到环境中,10 mSv及以上剂量被限制在2.5 km以内,烟羽通过路径内超过4 km的TED小于1 mSv,因此公众接受的剂量水平不会超过1 mSv,满足公众每年允许的剂量限制。参考小型反应堆建议的应急计划区划分标准,根据保守估计结果建议将该堆的应急计划区确定在3.22 km。研究结果为可移动式微堆的应急计划区划分和事故后果评价提供参考。
Small and micro reactors have attracted special attention due to their inherent high safety, simple operating characteristics, long-term continuous energy supply, ease of modularization, and good transportation characteristics. This article uses the Monte Carlo program cosRMC to calculate the core inventory of a mobile micro reactor HOPE (HOt Pipe cooled nuclear Energy system) after 10 years of operation. Referring to the preset accident radioactive material release share recommended by the IAEA and the US NRC guideline 1.183, the source term is assumed to occur in the event of a serious nuclear accident. The Lawrence Livermore National Laboratory (LLNL) HotSpot 3.1 program is used to simulate the atmospheric diffusion of radioactive nuclides and analyze the effects of different atmospheric stability, accident release heights, terrain, inversion layer heights, wind speed, and rainfall on the diffusion of radioactive substances and public radiation dose in the reactor accident scenario. The calculation results of Total Effective Dose (TED) under conservative meteorological conditions indicate that after 10 years of operation of HOPE, a large amount of radioactive substances will be released into the environment under hypothetical accidents. Doses of 10 mSv and above are limited to 2.5 km, and TED exceeding 4 km along the path of smoke is less than 1 mSv. Therefore, the dose level accepted by the public will not exceed 1 mSv, meeting the annual allowable dose limit for the public. Based on the conservative estimation results, it is recommended to determine the emergency plan area of the micro reactor at 3.22 km, taking into account the recommended emergency plan area classification criteria. The research results provide reference for the emergency planning area division and accident consequence evaluation of mobile micro reactors.

References

[1]  Nichol, M. (2018) Roadmap for the Deployment of Micro-Reactors for Us Department of Defense Domestic Installations. Nuclear Energy Institute, Washington DC.
[2]  丁昊. 超临界二氧化碳布雷顿循环瞬态模拟与控制[D]: [硕士学位论文]. 厦门: 厦门大学, 2021.
[3]  Chen, H.-Y., Liu, F.-D., Wang, S.-W., Wang, Y.-C., Xu, C. and Liu, Q.-F. (2023) Accident Source Term and Radiological Consequences of a Small Modular Reactor. Nuclear Science and Techniques, 34, 82-92.
https://doi.org/10.1007/s41365-023-01192-5
[4]  Lulik, B.E.R., Demontigny, D. and Hussein, E.M.A. (2018) Using HotSpot for Estimating Radiation Dose Following a Postulated SMR Accident. Proceedings of the 42nd Annual CNS/CNA Student Conference, Saskatoon, 3-6 June 2018, 169.
[5]  Hummel, D.W., Chouhan, S., Lebel, L. and Morreale, A.C. (2019) Radiation Dose Consequences of Postulated Limiting Accidents in Small Modular Reactors to Inform Emergency Planning Zone Size Requirements. Annals of Nuclear Energy, 137, Article 107062.
https://doi.org/10.1016/j.anucene.2019.107062
[6]  余慧, 全国萍, 秦瑶, 等. COSINE堆用蒙卡分析软件cosRMC研发与应用[J]. 核动力工程, 2021, 42(3): 218-223.
[7]  Qin, Y., Yu, H., Quan, G. and Chen, Y. (2017) Analysis of the VERA Core Physics Benchmark Problems Using cosRMC Code. Transactions of the American Nuclear Society, 116, 582-584.
[8]  Nuclear Regulatory Commission (2000) Alternative Radiological Source Terms for Evaluating Design Basis Accidents at Nuclear Power Reactors. Regulatory Guide 1.183, Nuclear Regulatory Commission, North Bethesda.
[9]  Homann, S.G. and Aluzzi, F. (2020) HotSpot Health Physics Codes Version 3.1.2 User’s Guide. National Atmospheric Release Advisory Center and Lawrence Livermore National Laboratory, Livermore.
[10]  张玉珍, 蒯琳萍, 杨燕华. CALPUFF模型在模拟核电站事故源项大气扩散中的应用[J]. 电力与能源, 2011, 32(2): 149-152.
[11]  彭珍, 胡非. 北京城市化进程对边界层风场结构影响的研究[J]. 地球物理学报, 2006, 49(6): 1608-1615.
[12]  Rajeswari, J.R., Srinivas, C.V., Yesubabu, V., et al. (2021) Impacts of Urbanization, Aerodynamic Roughness, and Land Surface Processes on the Extreme Heavy Rainfall over Chennai, India. Journal of Geophysical Research: Atmospheres, 126, e2020JD034017.
https://doi.org/10.1029/2020JD034017
[13]  Kundu, D., Srinivas, C.V., Chandrasekaran, S., et al. (2022) Radiological Consequence Assessment for Hypothetical Nuclear Explosion Scenario Using HotSpot. Progress in Nuclear Energy, 147, Article ID: 104192.
https://doi.org/10.1016/j.pnucene.2022.104192
[14]  Al-Aqeel, M.A. and Alrammah, I.A. (2023) Radiological Impact Assessment for Hypothetical Accident Scenarios of a Proposed Pressurized Water Reactor Using HotSpot Code. Radiation Physics and Chemistry, 204, Article ID: 110717.
https://doi.org/10.1016/j.radphyschem.2022.110717
[15]  IAEA (2011) Criteria for Use in Preparedness and Response for a Nuclear or Radiological Emergency. General Safety Guide, IAEA Safety Standards Series No. GSG-2, International Atomic Energy Agency, Vienna.
[16]  Environmental Protection Agency (EPA) (1992) Manual of Protective Action Guides and Protective Actions for Nuclear Incidents. EPA, Washington, DC.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413