全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于质体基因组序列变异位点的松科油杉属和冷杉属植物资源遗传多样性的分子鉴定新方法
A Novel Method for Molecular Identification of Genetic Diversity of Plant Resources in Abies Mill. and Keteleeria Carrière (Pinaceae) Based on Taxon-Specific Variable Nucleotide Characters from Complete Plastomes

DOI: 10.12677/br.2024.134046, PP. 434-445

Keywords: 松科,油杉属,冷杉属,植物资源多样性,质体基因组,核苷酸变异位点,分子鉴定
Pinaceae
, Abies Mill., Keteleeria Carrière, Plant Resource Diversity, Plastome, Variable Nucleotide Character, Molecular Identification

Full-Text   Cite this paper   Add to My Lib

Abstract:

物种多样性的精确鉴定是植物资源可持续利用的基础。油杉属和冷杉属是松科内的2个近缘的属。我们利用油杉属和冷杉属的种/变种的质体基因组序列中的物种特有的107个核苷酸变异位点作为分子性状首次编制分子鉴定检索表,供试样品得到成功鉴定。物种特有变异位点的数量和核苷酸构成存在种间差异。铁坚油杉(原变种)Keteleeria davidiana (C.E. Bertrand) var. Davidiana (44个)的特有变异位点的数量最多,随后依次是云南油杉Keteleeria evelyniana Mast. (34)、库页冷杉Abies sachalinensis (F. Schmidt) Mast. (19)以及白叶冷杉Abies veitchii Lindl. (10)。铁坚油杉(原变种)的特有变异位点中,T的比例(36.36%)最高,随后依次是A (29.55%)、G (20.45%)和C (13.64%),T的比例为C的比例的约2.6倍。云南油杉的特有变异位点中,A的比例(50.00%)最高,是T或C的比例(17.65%)的约2.8倍,是G的比例(14.71%)的约3.4倍。库页冷杉的特有变异位点中,C的比例(31.58%)最高,随后依次是T (26.32%)、A (21.05%)和G (21.05%),C的比例为A或G的比例的1.5倍。白叶冷杉的特有变异位点中,C的比例(30.00%)最高,是另外3种核苷酸(A、C或G)比例的1.5倍。结果显示,质体基因组的单核苷酸变异位点信息,可用于油杉属和冷杉属植物资源遗传多样性的分子鉴定。调查了中国过去120多年油杉属和冷杉属植物标本的收集现状,讨论了存在的问题和对策。本研究对于油杉属和冷杉属植物的分类修订、种质资源的保护和利用具有重要价值。
Accurate identification of genetic diversity at species/varietas levels is essential for sustainable utilization of plant resources. The genus Abies Mill. and Keteleeria Carrière are two closely related plant groups in the Pinaceae. In this paper, 107 taxon-specific variable nucleotide characters in the plastomes of species/varietas from Abies and Keteleeria were used as molecular traits to identify the plant genetic resource diversity of these plant genera and to compile a molecular classification key for the first time. There are differences in aspects of amount and base composition of variable nucleotide characters among the species/varietas. The amount of taxon-specific variable nucleotide characters in Keteleeria davidiana (C.E. Bertrand) Beissn. var. davidiana (44) is the highest, higher than that in Keteleeria evelyniana Mast. (34) or Abies sachalinensis (F. Schmidt) Mast. (19) or Abies veitchii Lindl.(10). In Keteleeria davidiana (C.E. Bertrand) Beissn. var. davidiana, the proportion of T(36.36%) ishigher than that of A(29.55%), or G(20.45%), C (13.64%) and is 2.6 times that of C. In Keteleeria evelyniana, the proportion of A (50.00%) is the highest and is 2.7 times that of T or C (17.65%), and 3.4 times that of G (14.71%). In Abies sachalinensis, the proportion of C (31.58%) is the highest, higher than T (26.32%), A (21.05%) or G (21.05%), and is 1.5 times that of A or G. In Abies veitchii, the proportion of C (30.00%) is the highest, 1.5 times that of each of the other three nucleotides. Our results indicated that taxon-specific variable nucleotide characters from the plastomes could be used for distinguishing different species successfully in the

References

[1]  中国科学院中国植物志编辑委员会. 中国植物志第7卷: 松科[M]. 北京: 科学出版社, 1978.
http://www.cn-flora.ac.cn/
[2]  Wu, Z.Y., Hong, D.Y. and Raven, P.H. (1999) Flora of China, Vol. 4, Pinaceae. Science Press, Beijing and Missouri Botanical Garden Press, St. Louis, 11-25.
https://www.iplant.cn/info/Pinus?t=foc
[3]  Wang X.Q., Tank D.C. and Sang T. (2000) Phylogeny and Divergence Times in Pinaceae: Evidence from Three Genomes. Molecular Biology and Evolution, 17, 773-781.
[4]  李楠, 傅立国, 朱政德. 松科系统学研究(Ⅰ) [J]. 植物研究, 1996, 16(1): 32-45.
[5]  Lin, C.P., Huang, J.P., Wu, C.S., Hsu, C.Y., and Chaw, S.M. (2010) Comparative Chloroplast Genomics Reveals the Evolution of Pinaceae Genera and Subfamilies. Genome Biology and Evolution, 2, 504-517.
https://doi.org/10.1093/gbe/evq036
[6]  李楠. 论松科植物的地理分布、起源和扩散[J]. 植物分类学报, 1998, 33(2): 105-130.
[7]  钟华, 周彬. 国家重点保护野生植物名录中松科植物濒危状态评估[J]. 西部林业科学, 2010, 39(3): 76-78.
https://doi.org/10.16473/j.cnki.xblykx1972.2010.03.001
[8]  Farjon, A. (1989) A Second Revision of the Genus Keteleeria carrière (Taxonomic Notes on Pinaceae II). Notes Royal Botanical Garden Edinburgh, 46, 81-99.
[9]  牟凤娟, 戴兴芬, 李双智, 等. 油杉属植物研究动态[J]. 西部林业科学, 2012, 41(6): 92-99.
[10]  向巧萍, 向秋云, Liston, A., 傅立国, 傅德志. ITS (nrDNA)片段在冷杉属植物中的长度多态性及其在松科的系统与演化研究中的应用[J]. 植物学报, 2000, 42(9): 946-951.
[11]  贯春雨, 张含国, 张磊, 朱航勇, 邓继峰. 基于松科树种EST序列的落叶松SSR引物开发[J]. 东北林业大学学报, 2011,39(1):20-23.
https://doi.org/10.13759/j.cnki.dlxb.2011.01.023
[12]  Semerikova, S. A. and Semerikov, V. L. (2016) Phylogeny of Firs (Genus Abies, Pinaceae) Based on Multilocus Nuclear Markers (AFLP). Russian Journal of Genetics, 52(11), 1164–1175.
[13]  杨雪丹. 基于叶绿体基因组的油杉属系统学和生物地理学研究[D]. [硕士学位论文]. 西安: 西北大学, 2022.
[14]  Dong, W.P., Xu, C., Li, D.L., Jin, X.B., Li, R.L., Lu, Q. and Suo Z.L. (2016) Comparative Analysis of the Complete Chloroplast Genome Sequences in Psammophytic Haloxylon Species (Amaranthaceae). PeerJ, 4, e2699.
https://doi.org/10.7717/peerj.2699
[15]  Dong, W.P., Xu, C., Li, W.Q., Xie, X.M., Lu, Y.Z., Liu, Y.L., Jin, X.B. and Suo, Z.L. (2017) Phylogenetic Resolution in Juglans Based on Complete Chloroplast Genomes and Nuclear DNA Sequences. Frontiers in Plant Science, 8, Article 1148.
https://doi.org/10.3389/fpls.2017.01148
[16]  Xu, C., Dong, W.P., Li, W.Y., Lu, Y.Z., Xie, X.M., Jin, X.B., Shi, J.P., He, K.H. and Suo, Z.L. (2017) Comparative Analysis of Six Lagerstroemia Complete Chloroplast Genomes. Frontiers in Plant Science, 8, Article 15.
https://doi.org/10.3389/fpls.2017.00015
[17]  Li, W.Q., Liu, Y.L., Yang, Y., Xie, X.M., Lu, Y.Z., Yang, Z.R., Jin, X.B., Dong, W.P. and Suo, Z.L. (2018) Interspecific Chloroplast Genome Sequence Diversity and Genomic Resources in Diospyros. BMC Plant Biology, 18, Article No. 210.
https://doi.org/10.1186/s12870-018-1421-3
[18]  Dong, W.P., Xu, C., Liu, Y.L., Shi, J.P., Li, W.Y. and Suo, Z.L. (2021) Chloroplast Phylogenomics and Divergence Times of Lagerstroemia (Lythraceae). BMC Genomics, 22, Article No. 434.
https://doi.org/10.1186/s12864-021-07769-x
[19]  Guo, C., Liu, K.J., Li, E.Z., Chen, Y.F., He, J.Y., Li, W.Y., Dong, W.P. and Suo, Z.L. (2023) Maternal Donor and Genetic Variation of Lagerstroemia indica Cultivars. International Journal of Molecular Sciences, 24, Article 3606.
https://doi.org/10.3390/ijms24043606
[20]  Suo, Z.L., Zhang, C.H., Zheng, Y.Q., He, L.X., Jin, X.B., Hou, B.X. and Li, J.J. (2012) Revealing Genetic Diversity of Tree Peonies at Micro-Evolution Level with Hyper-Variable Chloroplast Markers and Floral Traits. Plant Cell Reports, 31, 2199-2213.
https://doi.org/10.1007/s00299-012-1330-0
[21]  Suo, Z.L., Chen, L.N., Pei, D., Jin, X.B. and Zhang, H.J. (2015) A New Nuclear DNA Marker from Ubiquitin Ligase Gene Region for Genetic Diversity Detection of Walnut Germplasm Resources. Biotechnology Reports, 5, 40-45.
https://doi.org/10.1016/j.btre.2014.11.003
[22]  Suo, Z.L., Li, W.Y., Jin, X.B. and Zhang, H.J. (2016) A New Nuclear DNA Marker Revealing Both Microsatellite Variations and Single Nucleotide Polymorphic Loci: A Case Study on Classification of Cultivars in Lagerstroemia indica L. Journal of Microbial & Biochemical Technology, 8, 266-271.
https://doi.org/10.4172/1948-5948.1000296
[23]  李文清, 杨勇, 解孝满, 鲁仪增, 常青, 靳晓白, 索志立. E3泛素-蛋白连接酶UPL3 DNA序列揭示德阳柿和油柿为栽培柿的最近缘物种[J]. 农业科学, 2018, 8(6): 657-673.
https://doi.org/10.12677/hjas.2018.86100
[24]  索志立, 顾翠花, 左云娟, 杨志荣, 孙忠民, 杨强发, 靳晓白. 利用叶绿体基因组大单拷贝区的单核苷酸多态位点鉴定紫薇属和马尾藻属植物[J]. 植物学研究, 2022, 11(2): 218-228.
https://doi.org/10.12677/br.2022.112026
[25]  刘儒, 潘文婷, 李斌, 靳晓白, 李锐丽, 索志立. 利用叶绿体全基因组的单核苷酸多态位点对鹅掌楸和北美鹅掌楸的分子鉴定[J]. 农业科学, 2022, 12(11): 1098-1108.
https://doi.org/10.12677/hjas.2022.1211151
[26]  李斌, 左云娟, 刘艳磊, 杨志荣, 靳晓白, 潘伯荣, 常青, 索志立. 基于叶绿体基因组的单核苷酸多态位点的落叶松属(Larix Mill.)植物的分子鉴定新方法[J]. 植物学研究, 2023, 12(4): 227-239.
https://doi.org/10.12677/br.2023.124030
[27]  刘美辰, 左云娟, 刘艳磊, 杨志荣, 靳晓白, 索志立. 基于叶绿体全基因组核苷酸变异位点的大豆属(Glycine Willd.)植物的分子鉴定新方法[J]. 植物学研究, 2024, 13(2): 124-142.
https://doi.org/10.12677/BR.2024.132015
[28]  刘美辰, 张建农, 左云娟, 杨志荣, 靳晓白, 潘伯荣, 常青, 索志立. 基于叶绿体全基因组序列变异位点的葫芦科植物资源遗传多样性的分子鉴定新方法[J]. 植物学研究, 2024, 13(3): 289-314.
[29]  Katoh, K. and Standley, D.M. (2013) MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Molecular Biology and Evolution, 30, 772-780.
https://doi.org/10.1093/molbev/mst010
[30]  Kumar, S., Stecher, G. and Tamura, K. (2016) MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution, 33, 1870-1874.
https://doi.org/10.1093/molbev/msw054
[31]  Rozas, J., Ferrer-Mata, A., Sánchez-DelBarrio, J.C., Guirao-Rico, S., Librado P., Ramos-Onsins, S.E. and Sán chez-Gracia, A. (2017) DnaSP 6: DNA Sequence Polymorphism Analysis of Large Data Sets. Molecular Biology and Evolution, 34, 3299-3302.
https://doi.org/10.1093/molbev/msx248
[32]  Goodwin, Z.A., Harris, D.J., Filer, D., Wood, J.R.I. and Scotland, R.W. (2015) Wide Spread Mistaken Identity in Tropical Plant Collections. Current Biology, 25, R1057-R1069.
https://doi.org/10.1016/j.cub.2015.10.002
[33]  洪德元. 生物多样性事业需要科学、可操作的物种概念[J]. 生物多样性, 2016, 24(9): 979-999.
https://doi.org/10.17520/biods.2016203
[34]  王文采, 等. 世界植物简志[M]. 北京: 北京出版集团北京出版社, 2021: 1-172.
[35]  朱旭, 李嘉奇. 全球协同落实《昆明-蒙特利尔全球生物多样性框架》的挑战与出路: 基于SFIC模型的分析[J]. 生物多样性, 2023, 31(8): 168-176.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413