全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

葡甘聚糖微载体的制备工艺与表征研究
Study on Preparation Process and Characterization of Glucomannan Microcarriers

DOI: 10.12677/hjcet.2024.144031, PP. 298-304

Keywords: 葡甘聚糖,微载体,乳化搅拌分散法
Glucomannan
, Microcarrier, Emulsion Stirring Dispersion Method

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过乳化搅拌分散法制备葡甘聚糖微载体,考察水油比、乳化剂用量、乳化时间、交联剂浓度、交联温度和搅拌速度对成球率的影响,采用单因素实验法优化得到最佳制备条件。结果表明:以液体石蜡为油相、环氧氯丙烷为交联剂、span-80为乳化剂,当水油比为1:3、乳化剂用量为油相体积的1% (m/v)、乳化时间为10 h,搅拌速度为150 rpm、交联剂浓度为水相质量的10%、交联温度为60℃时,制备的微载体形貌规整,均一分散,粒径约为60~150 μm,具备良好的物理化学稳定性,耐受高温高压,为新型微载体的制备工艺提供广泛的应用。
Glucomannan microcarrier was prepared by Emulsion stirring dispersion method. The effects of water-oil ratio, emulsifier dosage, emulsifying time, crosslinking agent concentration, crosslinking temperature and stirring speed on pellet formation rate were investigated. The optimum preparation conditions were optimized by single factor experiment. The results show that: Using liquid paraffin as the oil phase, epiclorohydrin as the crosslinking agent, and span-80 as the emulsifier, the prepared microcarriers have regular morphology when the water-oil ratio is 1:3, the emulsifier dosage is 1% of the oil phase volume (m/v), emulsification time is 10 h, stirring speed is 150 rpm, the concentration of crosslinking agent is 10% of the water phase mass, and the crosslinking temperature is 60℃. It is uniformly dispersed with a particle size of about 60-150 μm, possessing good physical and chemical stability, withstanding high temperature and high pressure resistance, and providing a wide range of applications for the preparation of new microcarriers.

References

[1]  Kelly, S.A. and Grant, A.G. (1982) The Use of Polystyrene Microcarriers to Improve the Cell Yield from a Human Epithelial Pancreatic Tumour Cell Line. Cell Biology International Reports, 6, 733-739.
https://doi.org/10.1016/0309-1651(82)90165-5
[2]  Ohashi, K., Yokoyama, T., Yamato, M., Kuge, H., Kanehiro, H., Tsutsumi, M., et al. (2007) Engineering Functional Two-And Three-Dimensional Liver Systems in Vivo Using Hepatic Tissue Sheets. Nature Medicine, 13, 880-885.
https://doi.org/10.1038/nm1576
[3]  Schild, H.G. (1992) Poly(N-Isopropylacrylamide): Experiment, Theory and Application. Progress in Polymer Science, 17, 163-249.
https://doi.org/10.1016/0079-6700(92)90023-r
[4]  Walther, A. and Müller, A.H.E. (2013) Janus Particles: Synthesis, Self-Assembly, Physical Properties, and Applications. Chemical Reviews, 113, 5194-5261.
https://doi.org/10.1021/cr300089t
[5]  Kobayashi, N., Okitsu, T., Maruyama, M., Totsugawa, T., Kosaka, Y., Hayashi, N., et al. (2003) Development of a Cellulose-Based Microcarrier Containing Cellular Adhesive Peptides for a Bioartificial Liver. Transplantation Proceedings, 35, 443-444.
https://doi.org/10.1016/s0041-1345(02)03783-1
[6]  Hoffman, A.S. (1984) Applications of Polymers in Biotechnology. Pure and Applied Chemistry, 56, 1329-1334.
https://doi.org/10.1351/pac198456101329
[7]  Botchwey, E.A., Pollack, S.R., Levine, E.M. and Laurencin, C.T. (2001) Bone Tissue Engineering in a Rotating Bioreactor Using a Microcarrier Matrix System. Journal of Biomedical Materials Research, 55, 242-253.
https://doi.org/10.1002/1097-4636(200105)55:2<242::aid-jbm1011>3.0.co;2-d
[8]  Li, K.G., Wang, Y., Miao, Z.C., Xu, D.Y., Tang, Y.F. and Feng, M.F. (2004) Chitosan/Gelatin Composite Microcarrier for Hepatocyte Culture. Biotechnology Letters, 26, 879-883.
https://doi.org/10.1023/b:bile.0000025896.61490.6d
[9]  李学彪. 人工合成聚合物传递shRNA-IGF1R特异性抑制兔平滑肌细胞增值迁移的体内外实验研究[D]: [硕士学位论文]. 杭州: 浙江大学, 2015.
[10]  曹芳语, 黄可欣, 石凤娜, 等. 天然载体聚合物在载药水凝胶的研究应用于进展[J]. 高分子通报, 2023, 36(2): 158-171.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413