|
Applied Physics 2024
基于不同缺陷态结构的声学超材料振动能量回收研究
|
Abstract:
声学超材料能够实现低频振动能量的回收,在为无线电设备供能方面具有广阔的应用前景。本文的单胞结构为在正方形环氧树脂基体板内由内向外依次嵌入钨散射体、硅橡胶包覆层。计算了声学超材料结构的色散曲线和传输损失谱,并对结构进行了优化。通过设计点缺陷、线缺陷和不完整线缺陷结构,探究了超胞结构的能量局域化特性及振动能量回收性能。研究发现:三种不同的缺陷结构均能产生能量的局域,其中点缺陷具有最强的能量局域效果且能量回收性能最佳。对于最优的点缺陷结构,在峰值电压频率252.9 Hz处产生的输出电压为243.5 mV,最优输出功率为88.7 nW。本研究可为低频弹性波的控制及无线低功耗仪器的供能提供了理论参考。
Acoustic metamaterials can recover low-frequency vibration energy and have broad application prospects in the field of energy supply for radio equipment. In this paper, the single cell structure is the tungsten scatterer and silicone rubber coating layer embedded in the square epoxy resin matrix plate from inside to outside. The dispersion curve and transmission loss spectrum of the acoustic metamaterial structure are calculated and the structure is optimized. By designing point defect, line defect and incomplete line defect structures, the energy localization characteristics and vibration energy recovery performance of the supercellular structure are investigated. It is found that the three different defect structures can generate energy localization, and the point defect has the strongest energy localization effect and the best energy recovery performance. For the optimal point defect structure, the output voltage generated at the peak voltage frequency of 252.9 Hz is 243.5 mV and the optimal output power is 88.7 nW. This study can provide a theoretical reference for the control of low frequency elastic waves and the power supply of wireless low power instruments.
[1] | Kushwaha, M.S., Halevi, P., Dobrzynski, L. and Djafari-Rouhani, B. (1993) Acoustic Band Structure of Periodic Elastic Composites. Physical Review Letters, 71, 2022-2025. https://doi.org/10.1103/physrevlett.71.2022 |
[2] | 黄唯纯, 颜士玲, 李鑫, 等. 关于声学超构材料名词术语的探讨[J]. 中国材料进展, 2021, 40(1): 1-6+20-21. |
[3] | Thomes, R.L., Beli, D. and De Marqui, C. (2022) Space-Time Wave Localization in Electromechanical Metamaterial Beams with Programmable Defects. Mechanical Systems and Signal Processing, 167, Article ID: 108550. https://doi.org/10.1016/j.ymssp.2021.108550 |
[4] | Chen, Z., Guo, B., Yang, Y. and Cheng, C. (2014) Metamaterials-Based Enhanced Energy Harvesting: A Review. Physica B: Condensed Matter, 438, 1-8. https://doi.org/10.1016/j.physb.2013.12.040 |
[5] | Birir, J.K., Gatari, M.J., Syed Akbar Ali, M.S. and Rajagopal, P. (2024) Metamaterial Enhanced Subwavelength Imaging of Inaccessible Defects in Guided Ultrasonic Wave Inspection. NDT & E International, 143, Article ID: 103070. https://doi.org/10.1016/j.ndteint.2024.103070 |
[6] | Okudan, G., Xu, C., Danawe, H., Tol, S. and Ozevin, D. (2022) Controlling the Thickness Dependence of Torsional Wave Mode in Pipe-Like Structures with the Gradient-Index Phononic Crystal Lens. Ultrasonics, 124, Article ID: 106728. https://doi.org/10.1016/j.ultras.2022.106728 |
[7] | Fu, K., Zhao, Z. and Jin, L. (2019) Programmable Granular Metamaterials for Reusable Energy Absorption. Advanced Functional Materials, 29, Article ID: 1901258. https://doi.org/10.1002/adfm.201901258 |
[8] | 李晓春, 易秀英, 肖清武, 等. 三组元声子晶体中的缺陷态[J]. 物理学报, 2006(5): 2300-2305. |
[9] | Motaei, F. and Bahrami, A. (2022) Energy Harvesting from Sonic Noises by Phononic Crystal Fibers. Scientific Reports, 12, Article No. 10522. https://doi.org/10.1038/s41598-022-14134-9 |
[10] | Ma, T., Fan, Q., Li, Z., Zhang, C. and Wang, Y. (2020) Flexural Wave Energy Harvesting by Multi-Mode Elastic Metamaterial Cavities. Extreme Mechanics Letters, 41, Article ID: 101073. https://doi.org/10.1016/j.eml.2020.101073 |
[11] | Sun, K.H., Kim, J.E., Kim, J. and Song, K. (2017) Sound Energy Harvesting Using a Doubly Coiled-Up Acoustic Metamaterial Cavity. Smart Materials and Structures, 26, Article ID: 075011. https://doi.org/10.1088/1361-665x/aa724e |
[12] | Chuang, K., Zhang, Z. and Wang, H. (2016) Experimental Study on Slow Flexural Waves around the Defect Modes in a Phononic Crystal Beam Using Fiber Bragg Gratings. Physics Letters A, 380, 3963-3969. https://doi.org/10.1016/j.physleta.2016.09.055 |
[13] | Sigalas, M.M. (1997) Elastic Wave Band Gaps and Defect States in Two-Dimensional Composites. The Journal of the Acoustical Society of America, 101, 1256-1261. https://doi.org/10.1121/1.418156 |
[14] | Yao, Z., Yu, G., Wang, Y. and Shi, Z. (2009) Propagation of Bending Waves in Phononic Crystal Thin Plates with a Point Defect. International Journal of Solids and Structures, 46, 2571-2576. https://doi.org/10.1016/j.ijsolstr.2009.02.002 |
[15] | Li, Y., Zhu, L., Chen, T., et al. (2018) Elastic Wave Confinement and Absorption in a Dissipative Metamaterial. Indian Journal of Pure & Applied Physics, 56, 158-163. |
[16] | Jo, S., Yoon, H., Shin, Y.C., Choi, W., Park, C., Kim, M., et al. (2020) Designing a Phononic Crystal with a Defect for Energy Localization and Harvesting: Supercell Size and Defect Location. International Journal of Mechanical Sciences, 179, Article ID: 105670. https://doi.org/10.1016/j.ijmecsci.2020.105670 |
[17] | Kim, S., Choi, J., Seung, H.M., Jung, I., Ryu, K.H., Song, H., et al. (2022) Gradient-Index Phononic Crystal and Helmholtz Resonator Coupled Structure for High-Performance Acoustic Energy Harvesting. Nano Energy, 101, Article ID: 107544. https://doi.org/10.1016/j.nanoen.2022.107544 |
[18] | He, Z., Zhang, G., Chen, X., Cong, Y., Gu, S. and Hong, J. (2023) Elastic Wave Harvesting in Piezoelectric-Defect-Introduced Phononic Crystal Microplates. International Journal of Mechanical Sciences, 239, Article ID: 107892. https://doi.org/10.1016/j.ijmecsci.2022.107892 |
[19] | Xiang, H., Chai, Z., Kou, W., Zhong, H. and Xiang, J. (2024) An Investigation of the Energy Harvesting Capabilities of a Novel Three-Dimensional Super-Cell Phononic Crystal with a Local Resonance Structure. Sensors, 24, Article No. 361. https://doi.org/10.3390/s24020361 |
[20] | Deng, T., Zhao, L. and Jin, F. (2024) Dual-Functional Perforated Metamaterial Plate for Amplified Energy Harvesting of Both Acoustic and Flexural Waves. Thin-Walled Structures, 197, Article ID: 111615. https://doi.org/10.1016/j.tws.2024.111615 |