全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Study of the Magnetocaloric Effect in La0.5Sm0.2Sr0.3Mn1-xFexO3 (x = 0 and 0.05) Manganites with the Mean-Field Theory

DOI: 10.4236/ampc.2024.147009, PP. 113-122

Keywords: Manganites, Magnetization, Magnetocaloric Effect, Mean Field Model, Simulation

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper, the magnetocaloric in La0.5Sm0.2Sr0.3Mn1-xFexO3 compounds with x = 0 (LSSMO) and x = 0.05 (LSSMFO) were simulated using mean field model theory. A strong consistency was observed between the theoretical and experimental curves of magnetizations and magnetic entropy changes, Δ S M ( T ) . Based on the mean-field generated Δ S M ( T ) , the substantial Temperature-averaged Entropy Change (TEC) values reinforce the appropriateness of these materials for use in magnetic refrigeration technology within TEC (10) values of 1 and 0.57 J?kg1?K1under 1 T applied magnetic field.

References

[1]  Li, L.W. and Mi, Y. (2023) Recent Progress in the Development of Re2TMTM’O6 Double Perovskite Oxides for Cryogenic Magnetic Refrigeration. Journal of Materials Science & Technology, 136, 1-12.
https://doi.org/10.1016/j.jmst.2022.01.041
[2]  Wang, Q.W., Wu, Q., Cheng, H.F., et al. (2023) Review of the Research on Oxides in Low-Temperature Magnetic Refrigeration. Journal of the European Ceramic Society, 43, 6665-6680.
https://doi.org/10.1016/j.jeurceramsoc.2023.07.063
[3]  Hojat, A., Fatimah, M. and Khojasteh-Salkuyeh, Y. (2023) Conceptual Design of Two Novel Hydrogen Liquefaction Processes Using a Multistage Active Magnetic Refrigeration System. Applied Thermal Engineering, 230, Article 120771.
https://doi.org/10.1016/j.applthermaleng.2023.120771
[4]  Lee, J.S. (2023) Thermodynamic Analysis on a Magnetic Refrigeration System. International Journal of Air-Conditioning and Refrigeration, 31, Article No. 23.
https://doi.org/10.1007/s44189-023-00040-w
[5]  Souheila, M. (2023) Introduction to Magnetic Refrigeration: Magnetocaloric Materials. International Journal of Air-Conditioning and Refrigeration, 31, Article No. 5.
https://doi.org/10.1007/s44189-023-00021-z
[6]  Gao, L., Wang, P.Y., et al. (2023) Performance Study of a Double-Regenerator Room Temperature Magnetic Refrigerator with 26˚C Temperature Span. International Journal of Refrigeration, 148, 143-151.
https://doi.org/10.1016/j.ijrefrig.2023.01.007
[7]  Ali Osman, A., Çetin, S.K., et al. (2023) Magnetic Refrigeration: Current Progress in Magnetocaloric Properties of Perovskite Manganite Materials. Materials Today Communications, Article 105988.
https://doi.org/10.1016/j.mtcomm.2023.105988
[8]  Suye, B., Yibole, H., Meijuan, W., Wurentuya, B. and Guillou, F. (2023) Influence of the Particle Size on a MnFe (P, Si, B) Compound with Giant Magnetocaloric Effect. AIP Advances, 13, Article 025203.
https://doi.org/10.1063/9.0000371
[9]  Liu, Z.W. (2023) Advances in Metal-Containing Magnetic Materials and Magnetic Technologies. Metals, 13, Article 1318.
https://doi.org/10.3390/met13071318
[10]  Souhir, B., Hsini, M., et al. (2023) Magnetocaloric Effect and Critical Behavior of the La0.75Ca0.1Na0.15MnO3 Compound. RSC Advances, 13, 16529-16535.
https://doi.org/10.1039/D3RA02443A
[11]  Nawel, K., Salha, K. and Hsini, M. (2023) Critical Behaviour and Magnetocaloric Effect Simulation in Tb2Rh3Ge. Bulletin of Materials Science, 46, Article No. 221.
https://doi.org/10.1007/s12034-023-03056-5
[12]  Starkov, I.A. and Starkov, A.S. (2023) Modeling of the Magnetobarocaloric Effect in the Framework of the Mean-Field Theory. Journal of Magnetism and Magnetic Materials, 587, Article 171344.
https://doi.org/10.1016/j.jmmm.2023.171344
[13]  Caro, P.J. and de Oliveira, N.A. (2023) Magnetocaloric Effect in R2Cu2Cd (R=Gd, Tb, Er, Tm). Physica B: Condensed Matter, 650, Article 414496.
https://doi.org/10.1016/j.physb.2022.414496
[14]  Abassi, M., Zaidi, N. and Hlil, E.K. (2023) Magnetocaloric Effect Simulation in TbFeSi and DyFeSi Intermetallic Magnetic Alloys Using Mean-Field Model. Journal of Superconductivity and Novel Magnetism, 36, 397-401.
https://doi.org/10.1007/s10948-022-06490-4
[15]  Pérez, E. and Rodríguez, M. (2022) Mean-Field Simulations of Magnetocaloric Materials under Non-Equilibrium Conditions: Implications for Rapid Cooling Applications. Journal of Thermal Analysis and Calorimetry, 143, 1991-2001.
[16]  Mohamed, H., Hcini, S. and Zemni, S. (2018) Magnetocaloric Effect Studying by Means of Theoretical Models in Pr0.5Sr0.5MnO3 Manganite. Journal of Magnetism and Magnetic Materials, 466, 368-375.
https://doi.org/10.1016/j.jmmm.2018.07.051
[17]  Mohamed, H., Hcini, S. and Zemni, S. (2019) Magnetocaloric Effect Simulation by Landau Theory and Mean-Field Approximation in Pr0.5Sr0.5MnO3. The European Physical Journal Plus, 134, Article No. 588.
https://doi.org/10.1140/epjp/i2019-12975-4
[18]  Mohamed, H. and Boutaleb, M. (2020) Simulation of the Magnetocaloric Effect by Means of Theoretical Models in Gd3Ni2 and Gd3CoNi Systems. The European Physical Journal Plus, 135, Article No. 186.
https://doi.org/10.1140/epjp/s13360-020-00105-4
[19]  Sudharshan, V., Munendra Pal, T.D.R. and Asthana, S. (2024) Investigation of Magnetocaloric Effect and Critical Field Analysis of Nd0.7-XLaxSr0.3MnO3 (X= 0.0-0.3) Manganites. ECS Journal of Solid State Science and Technology, 13, Article 043016.
https://doi.org/10.1149/2162-8777/ad3fe7
[20]  Xie, Z.J., Feng, M., Zou, Z.G., Jiang, X.Y. and Zhang, W.J. (2023) Structural, Magnetic, and Magnetocaloric Properties of La0.67Sr0.33-XKxMn0.95Ni0.05O3 Manganites (X= 0.10, 0.125, and 0.15): A-Site Doping. Journal of Superconductivity and Novel Magnetism, 36, 1751-1766.
https://doi.org/10.1007/s10948-023-06617-1
[21]  Pan, B.L., Luo, X.Y., Fang, J.Y., Wu, Q., Yu, N.J., et al. (2023) Structural, Magnetic and Magnetocaloric Investigation of La0. 7-X Eu X Ba0. 3MnO3 Manganites. Bulletin of Materials Science, 46, Article No. 59.
https://doi.org/10.1007/s12034-022-02882-3
[22]  Kh, A., Cherif, W., et al. (2019) Structural, Magnetic and Magnetocaloric Properties of La0.5Sm0.2Sr0.3Mn1-XFexO3 Compounds with (0≤ X≤ 0.15). Journal of Magnetism and Magnetic Materials, 475, 635-642.
https://doi.org/10.1016/j.jmmm.2018.12.007
[23]  Charles, K. and McEuen, P. (2018) Introduction to Solid State Physics. Wiley.
[24]  Liu, Q.Y., Wang, J.F., Xie, H.C., Fu, Q., et al. (2023) Giant Low-Field Magnetocaloric Effect in Hexagonal Eu3B2O6 Compound. Journal of Alloys and Compounds, 936, Article 168372.
https://doi.org/10.1016/j.jallcom.2022.168372
[25]  Shu, Y.Y., Wang, L.F., Huang, S.L. and Zhang, Y.K. (2024) Magnetic Properties and Large Magneto-Caloric Effect in the Amorphous Ho0.2Tm0.2Gd0.2Co0.2Al0.2 Ribbons. Journal of Non-Crystalline Solids, 628, Article 122846.
https://doi.org/10.1016/j.jnoncrysol.2024.122846
[26]  Pramod, N., Murari, R.M.S. and Daivajna, M.D. (2024) Influence of Heat Sintering on the Physical Properties of Bulk La 0.67 Ca 0.33 MnO3 Perovskite Manganite: Role of Oxygen in Tuning the Magnetocaloric Response. Physical Chemistry Chemical Physics, 26, 5237-5252.
https://doi.org/10.1039/D3CP04185A

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133