In this paper, the magnetocaloric in La0.5Sm0.2Sr0.3Mn1-xFexO3 compounds with x = 0 (LSSMO) and x = 0.05 (LSSMFO) were simulated using mean field model theory. A strong consistency was observed between the theoretical and experimental curves of magnetizations and magnetic entropy changes,
. Based on the mean-field generated
, the substantial Temperature-averaged Entropy Change (TEC) values reinforce the appropriateness of these materials for use in magnetic refrigeration technology within TEC (10) values of 1 and 0.57 J?kg?1?K?1under 1 T applied magnetic field.
References
[1]
Li, L.W. and Mi, Y. (2023) Recent Progress in the Development of Re2TMTM’O6 Double Perovskite Oxides for Cryogenic Magnetic Refrigeration. Journal of Materials Science & Technology, 136, 1-12. https://doi.org/10.1016/j.jmst.2022.01.041
[2]
Wang, Q.W., Wu, Q., Cheng, H.F., et al. (2023) Review of the Research on Oxides in Low-Temperature Magnetic Refrigeration. Journal of the European Ceramic Society, 43, 6665-6680. https://doi.org/10.1016/j.jeurceramsoc.2023.07.063
[3]
Hojat, A., Fatimah, M. and Khojasteh-Salkuyeh, Y. (2023) Conceptual Design of Two Novel Hydrogen Liquefaction Processes Using a Multistage Active Magnetic Refrigeration System. Applied Thermal Engineering, 230, Article 120771. https://doi.org/10.1016/j.applthermaleng.2023.120771
[4]
Lee, J.S. (2023) Thermodynamic Analysis on a Magnetic Refrigeration System. International Journal of Air-Conditioning and Refrigeration, 31, Article No. 23. https://doi.org/10.1007/s44189-023-00040-w
[5]
Souheila, M. (2023) Introduction to Magnetic Refrigeration: Magnetocaloric Materials. International Journal of Air-Conditioning and Refrigeration, 31, Article No. 5. https://doi.org/10.1007/s44189-023-00021-z
[6]
Gao, L., Wang, P.Y., et al. (2023) Performance Study of a Double-Regenerator Room Temperature Magnetic Refrigerator with 26˚C Temperature Span. International Journal of Refrigeration, 148, 143-151. https://doi.org/10.1016/j.ijrefrig.2023.01.007
[7]
Ali Osman, A., Çetin, S.K., et al. (2023) Magnetic Refrigeration: Current Progress in Magnetocaloric Properties of Perovskite Manganite Materials. Materials Today Communications, Article 105988. https://doi.org/10.1016/j.mtcomm.2023.105988
[8]
Suye, B., Yibole, H., Meijuan, W., Wurentuya, B. and Guillou, F. (2023) Influence of the Particle Size on a MnFe (P, Si, B) Compound with Giant Magnetocaloric Effect. AIP Advances, 13, Article 025203. https://doi.org/10.1063/9.0000371
[9]
Liu, Z.W. (2023) Advances in Metal-Containing Magnetic Materials and Magnetic Technologies. Metals, 13, Article 1318. https://doi.org/10.3390/met13071318
[10]
Souhir, B., Hsini, M., et al. (2023) Magnetocaloric Effect and Critical Behavior of the La0.75Ca0.1Na0.15MnO3 Compound. RSC Advances, 13, 16529-16535. https://doi.org/10.1039/D3RA02443A
[11]
Nawel, K., Salha, K. and Hsini, M. (2023) Critical Behaviour and Magnetocaloric Effect Simulation in Tb2Rh3Ge. Bulletin of Materials Science, 46, Article No. 221. https://doi.org/10.1007/s12034-023-03056-5
[12]
Starkov, I.A. and Starkov, A.S. (2023) Modeling of the Magnetobarocaloric Effect in the Framework of the Mean-Field Theory. Journal of Magnetism and Magnetic Materials, 587, Article 171344. https://doi.org/10.1016/j.jmmm.2023.171344
[13]
Caro, P.J. and de Oliveira, N.A. (2023) Magnetocaloric Effect in R2Cu2Cd (R=Gd, Tb, Er, Tm). Physica B: Condensed Matter, 650, Article 414496. https://doi.org/10.1016/j.physb.2022.414496
[14]
Abassi, M., Zaidi, N. and Hlil, E.K. (2023) Magnetocaloric Effect Simulation in TbFeSi and DyFeSi Intermetallic Magnetic Alloys Using Mean-Field Model. Journal of Superconductivity and Novel Magnetism, 36, 397-401. https://doi.org/10.1007/s10948-022-06490-4
[15]
Pérez, E. and Rodríguez, M. (2022) Mean-Field Simulations of Magnetocaloric Materials under Non-Equilibrium Conditions: Implications for Rapid Cooling Applications. Journal of Thermal Analysis and Calorimetry, 143, 1991-2001.
[16]
Mohamed, H., Hcini, S. and Zemni, S. (2018) Magnetocaloric Effect Studying by Means of Theoretical Models in Pr0.5Sr0.5MnO3 Manganite. Journal of Magnetism and Magnetic Materials, 466, 368-375. https://doi.org/10.1016/j.jmmm.2018.07.051
[17]
Mohamed, H., Hcini, S. and Zemni, S. (2019) Magnetocaloric Effect Simulation by Landau Theory and Mean-Field Approximation in Pr0.5Sr0.5MnO3. The European Physical Journal Plus, 134, Article No. 588. https://doi.org/10.1140/epjp/i2019-12975-4
[18]
Mohamed, H. and Boutaleb, M. (2020) Simulation of the Magnetocaloric Effect by Means of Theoretical Models in Gd3Ni2 and Gd3CoNi Systems. The European Physical Journal Plus, 135, Article No. 186. https://doi.org/10.1140/epjp/s13360-020-00105-4
[19]
Sudharshan, V., Munendra Pal, T.D.R. and Asthana, S. (2024) Investigation of Magnetocaloric Effect and Critical Field Analysis of Nd0.7-XLaxSr0.3MnO3 (X= 0.0-0.3) Manganites. ECS Journal of Solid State Science and Technology, 13, Article 043016. https://doi.org/10.1149/2162-8777/ad3fe7
[20]
Xie, Z.J., Feng, M., Zou, Z.G., Jiang, X.Y. and Zhang, W.J. (2023) Structural, Magnetic, and Magnetocaloric Properties of La0.67Sr0.33-XKxMn0.95Ni0.05O3 Manganites (X= 0.10, 0.125, and 0.15): A-Site Doping. Journal of Superconductivity and Novel Magnetism, 36, 1751-1766. https://doi.org/10.1007/s10948-023-06617-1
[21]
Pan, B.L., Luo, X.Y., Fang, J.Y., Wu, Q., Yu, N.J., et al. (2023) Structural, Magnetic and Magnetocaloric Investigation of La0. 7-X Eu X Ba0. 3MnO3 Manganites. Bulletin of Materials Science, 46, Article No. 59. https://doi.org/10.1007/s12034-022-02882-3
[22]
Kh, A., Cherif, W., et al. (2019) Structural, Magnetic and Magnetocaloric Properties of La0.5Sm0.2Sr0.3Mn1-XFexO3 Compounds with (0≤ X≤ 0.15). Journal of Magnetism and Magnetic Materials, 475, 635-642. https://doi.org/10.1016/j.jmmm.2018.12.007
[23]
Charles, K. and McEuen, P. (2018) Introduction to Solid State Physics. Wiley.
[24]
Liu, Q.Y., Wang, J.F., Xie, H.C., Fu, Q., et al. (2023) Giant Low-Field Magnetocaloric Effect in Hexagonal Eu3B2O6 Compound. Journal of Alloys and Compounds, 936, Article 168372. https://doi.org/10.1016/j.jallcom.2022.168372
[25]
Shu, Y.Y., Wang, L.F., Huang, S.L. and Zhang, Y.K. (2024) Magnetic Properties and Large Magneto-Caloric Effect in the Amorphous Ho0.2Tm0.2Gd0.2Co0.2Al0.2 Ribbons. Journal of Non-Crystalline Solids, 628, Article 122846. https://doi.org/10.1016/j.jnoncrysol.2024.122846
[26]
Pramod, N., Murari, R.M.S. and Daivajna, M.D. (2024) Influence of Heat Sintering on the Physical Properties of Bulk La 0.67 Ca 0.33 MnO3 Perovskite Manganite: Role of Oxygen in Tuning the Magnetocaloric Response. Physical Chemistry Chemical Physics, 26, 5237-5252. https://doi.org/10.1039/D3CP04185A