全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

氧化镓中子辐照损伤模拟研究
Simulation Study of Neutron Irradiation Damage in Gallium Oxide

DOI: 10.12677/nst.2024.123026, PP. 263-272

Keywords: 氧化镓,中子辐照,辐照损伤,Geant4
Gallium Oxide
, Neutron Irradiation, Irradiation Damage, Geant4

Full-Text   Cite this paper   Add to My Lib

Abstract:

氧化镓(Ga2O3)材料作为代表性的超宽禁带半导体材料之一,具有宽带隙、高击穿电场等优异的物理性能,在深空探测的器件中具有广阔的应用前景。为了研究和揭示深空环境下Ga2O3材料的辐射损伤对探测器性能的影响,本文利用Geant4模拟研究了不同能量中子辐照Ga2O3材料产生的辐射损伤效应,包括位移损伤和电离损伤。结果表明:Ga2O3中中子产生的反冲原子能量主要在低能区,全部发生小角度散射;对于中子辐照产生的二次粒子,发生非弹性散射和裂变反应时能量损失大,中子有显著的核反应;中子在Ga2O3材料中输运时,还会产生一定数量的次级质子、伽马粒子、中子及alpha粒子,都会对Ga2O3材料造成电离损伤和位移损伤。模拟结果为中子辐照环境下Ga2O3材料的实验研究提供理论指导,对Ga2O3材料应用于深空探测具有参考价值。
Gallium oxide (Ga2O3) material is one of the representative ultra-wideband semiconductor materials, with wide bandgap, high breakdown electric field, and other excellent physical properties, and has a broad application prospect in the device of deep space exploration. To study and reveal the effect of radiation damage on the detector performance of Ga2O3 material in the deep space environment, this paper uses Geant4 simulation to study the radiation damage effects produced by different energies of neutron irradiation of Ga2O3 material, including displacement damage and ionization damage. The results show that the recoil atomic energy generated by neutrons in Ga2O3 is mainly in the low-energy region, and all of them are scattered at a small angle; For secondary particles produced by neutron irradiation, inelastic scattering and fission reactions occur with large energy losses, and neutrons have significant nuclear reactions; when the neutrons are transported in Ga2O3 material, a certain number of secondary protons, gamma particles, neutrons, and alpha particles are generated, which will cause ionization damage to the Ga2O3 material. Ga2O3 material, all of which cause ionization damage and displacement damage. The simulation results provide theoretical guidance for the experimental study of Ga2O3 materials under a neutron irradiation environment, which is of reference value for the application of Ga2O3 materials in deep space exploration.

References

[1]  Polyakov, A.Y., Smirnov, N.B., Shchemerov, I.V., Pearton, S.J., Ren, F., Chernykh, A.V., et al. (2018) Hole Traps and Persistent Photocapacitance in Proton Irradiated β-Ga2O3 Films Doped with Si. APL Materials, 6, Article ID: 096102.
https://doi.org/10.1063/1.5042646
[2]  Polyakov, A.Y., Smirnov, N.B., Shchemerov, I.V., Vasilev, A.A., Yakimov, E.B., Chernykh, A.V., et al. (2020) Pulsed Fast Reactor Neutron Irradiation Effects in Si Doped N-Type β-Ga2O3. Journal of Physics D: Applied Physics, 53, Article ID: 274001.
https://doi.org/10.1088/1361-6463/ab83c4
[3]  Bhuiyan, A.F.M.A.U., Feng, Z., Huang, H., Meng, L., Hwang, J. and Zhao, H. (2021) Metalorganic Chemical Vapor Deposition of α-Ga2O3 and α-(AlxGa1?x)2O3 Thin Films on M-Plane Sapphire Substrates. APL Materials, 9, Article ID: 101109.
https://doi.org/10.1063/5.0065087
[4]  Liu, X., Wang, H., Chiu, H., Chen, Y., Li, D., Huang, C., et al. (2020) Analysis of the Back-Barrier Effect in AlGaN/GaN High Electron Mobility Transistor on Free-Standing GaN Substrates. Journal of Alloys and Compounds, 814, Article ID: 152293.
https://doi.org/10.1016/j.jallcom.2019.152293
[5]  Bae, J., Kim, H.W., Kang, I.H. and Kim, J. (2020) Dual-Field Plated β-Ga2O3 nano-FETs with an Off-State Breakdown Voltage Exceeding 400 V. Journal of Materials Chemistry C, 8, 2687-2692.
https://doi.org/10.1039/c9tc05161a
[6]  Zhang, H., Yuan, L., Tang, X., Hu, J., Sun, J., Zhang, Y., et al. (2020) Progress of Ultra-Wide Bandgap Ga2O3 Semiconductor Materials in Power MOSFETs. IEEE Transactions on Power Electronics, 35, 5157-5179.
https://doi.org/10.1109/tpel.2019.2946367
[7]  Farzana, E., Chaiken, M.F., Blue, T.E., Arehart, A.R. and Ringel, S.A. (2018) Impact of Deep Level Defects Induced by High Energy Neutron Radiation in β-Ga2O3. APL Materials, 7, Article ID: 022502.
https://doi.org/10.1063/1.5054606
[8]  Sun, R., Chen, X., Liu, C., Chen, W. and Zhang, B. (2021) Degradation Mechanism of Schottky P-GaN Gate Stack in GaN Power Devices under Neutron Irradiation. Applied Physics Letters, 119, Article ID: 133503.
https://doi.org/10.1063/5.0065046
[9]  Lei, Z., Guo, H., Tang, M., Zeng, C., Chen, H. and Zhang, Z. (2016). Heavy Ions Irradiation Effects on AlGaN/GaN High Electron Mobility Transistors. 2016 16th European Conference on Radiation and Its Effects on Components and Systems (RADECS), Bremen, 19-23 September 2016, 1-4.
https://doi.org/10.1109/radecs.2016.8093107
[10]  Holmes-Siedle, A. and Adams, L. (2002) Handbook of Radiation Effects. Oxford University Press.
[11]  Yang, G., Jang, S., Ren, F., Pearton, S.J. and Kim, J. (2017) Influence of High-Energy Proton Irradiation on β-Ga2O3 Nanobelt Field-Effect Transistors. ACS Applied Materials & Interfaces, 9, 40471-40476.
https://doi.org/10.1021/acsami.7b13881
[12]  Ai, W., Liu, J., Feng, Q., Zhai, P., Hu, P., Zeng, J., et al. (2021) Degradation of β-Ga2O3 Schottky Barrier Diode under Swift Heavy Ion Irradiation. Chinese Physics B, 30, 056110.
https://doi.org/10.1088/1674-1056/abf107
[13]  Zhang, Z., Lei, Z., Tong, T., Li, X., Xi, K., Peng, C., et al. (2019) Tibetan-Plateau-Based Real-Time Testing and Simulations of Single-Bit and Multiple-Cell Upsets in QDRII+ SRAM Devices. IEEE Transactions on Nuclear Science, 66, 1368-1373.
https://doi.org/10.1109/tns.2019.2913190
[14]  Lorenz, K., Marques, J.G., Franco, N., Alves, E., Peres, M., Correia, M.R., et al. (2008) Defect Studies on Fast and Thermal Neutron Irradiated GaN. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 266, 2780-2783.
https://doi.org/10.1016/j.nimb.2008.03.116
[15]  Lü, L., Hao, Y., Zheng, X., Zhang, J., Xu, S., Lin, Z., et al. (2012) Proton Irradiation Effects on HVPE GaN. Science China Technological Sciences, 55, 2432-2435.
https://doi.org/10.1007/s11431-012-4953-z
[16]  Wang, R.X., Xu, S.J., Fung, S., Beling, C.D., Wang, K., Li, S., et al. (2005) Micro-Raman and Photoluminescence Studies of Neutron-Irradiated Gallium Nitride Epilayers. Applied Physics Letters, 87, Article ID: 031906.
https://doi.org/10.1063/1.1999011
[17]  Lazanu, I. and Lazanu, S. (2005) Silicon Detectors: From Radiation Hard Devices Operating Beyond LHC Conditions to Characterization of Primary Fourfold Coordinated Vacancy Defects. Romanian Reports in Physics, 57, 342-348.
[18]  Allison, J., Amako, K., Apostolakis, J., Arce, P., Asai, M., Aso, T., et al. (2016) Recent developments in GEANT4. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 835, 186-225.
https://doi.org/10.1016/j.nima.2016.06.125
[19]  Konoplev, V., Caturla, M.J., Abril, I. and Gras-Marti, A. (1994) Bulk Atomic Relocation in Low-Energy Collision Cascades in Silicon: Molecular Dynamics versus Monte Carlo Simulations. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 90, 363-368.
https://doi.org/10.1016/0168-583x(94)95572-7

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413