全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

几何参数和声虹吸效应对薄膜声学超材料低频吸声性能的影响
The Effects of Geometric Parameters and Acoustic Siphon Effect on the Low-Frequency Sound Absorption Properties of Thin Film Acoustic Metamaterials

DOI: 10.12677/app.2024.147061, PP. 571-582

Keywords: 膜型声学超材料,吸声特性,声虹吸效应,低频宽带
Membrane-Type Acoustic Metamaterials
, Sound Absorption Characteristics, Sound Siphon Effect, Low Frequency Broadband

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对低频噪声防治问题,本文设计了一种薄膜型声学超材料,质量块选用圆形质量块,分析几何参数对其吸声性能的影响,同时利用阻抗匹配原理解释了产生吸声峰的原因。研究结果表明:吸收峰主要来源于薄膜弹性振动;改变薄膜及附加质量的几何参数均会显著改变吸收峰的幅频特征,因此,可针对目标频谱特性,通过优化薄膜和附加质量的几何参数,有效改善薄膜声学超材料的吸声性能。引入声虹吸效应能提升了声学超材料低频吸声效果,为声学超材料结构设计与优化方面提供了解决思路。
Aiming at the problem of low-frequency noise prevention and control, a thin-film acoustic metamaterial is designed in this paper. The circular mass block is selected as the mass block, and the influence of geometric parameters on its sound absorption performance is analyzed. At the same time, the impedance matching principle is used to explain the cause of the sound absorption peak. The results show that the absorption peak mainly comes from the elastic vibration of the film; changing the geometric parameters of the film and the additional mass will significantly change the amplitude-frequency characteristics of the absorption peak. Therefore, the sound absorption performance of the film acoustic metamaterial can be effectively improved by optimizing the geometric parameters of the film and the additional mass for the target spectral characteristics. The introduction of acoustic siphon effect can improve the low-frequency sound absorption effect of acoustic metamaterials, which provides a solution for the structural design and optimization of acoustic metamaterials.

References

[1]  吴宗汉, 徐世和. 声学超材料与结构工程应用前景展望[J]. 电声技术, 2017, 41(9): 16-27.
[2]  吴九汇, 马富银, 张思文, 等. 声学超材料在低频减振降噪中的应用评述[J]. 机械工程学报, 2016, 52(13): 68-78.
[3]  曹尔泰, 延浩, 黄河源. 飞行器舱室内壁蛛网仿生薄膜声学超材料设计[J]. 航空科学技术, 2024, 35(3): 11-19.
[4]  夏百战, 杨天智. 声学超材料和声子晶体研究进展[J]. 动力学与控制学报, 2023, 21(7): 1-4.
[5]  Mei, J., Ma, G., Yang, M., Yang, Z., Wen, W. and Sheng, P. (2012) Dark Acoustic Metamaterials as Super Absorbers for Low-Frequency Sound. Nature Communications, 3, Article No. 756.
https://doi.org/10.1038/ncomms1758
[6]  Chen, Y., Huang, G., Zhou, X., Hu, G. and Sun, C. (2014) Analytical Coupled Vibroacoustic Modeling of Membrane-Type Acoustic Metamaterials: Membrane Model. The Journal of the Acoustical Society of America, 136, 969-979.
https://doi.org/10.1121/1.4892870
[7]  Ma, G., Yang, M., Xiao, S., Yang, Z. and Sheng, P. (2014) Acoustic Metasurface with Hybrid Resonances. Nature Materials, 13, 873-878.
https://doi.org/10.1038/nmat3994
[8]  Liu, C.R., Wu, J.H., Lu, K., Zhao, Z.T. and Huang, Z. (2019) Acoustical Siphon Effect for Reducing the Thickness in Membrane-Type Metamaterials with Low-Frequency Broadband Absorption. Applied Acoustics, 148, 1-8.
https://doi.org/10.1016/j.apacoust.2018.12.008
[9]  王家声, 刘艳, 李秋彤, 等. 材料与几何参数对薄膜超材料吸声性能的影响[J]. 噪声与振动控制, 2021, 41(4): 54-59.
[10]  Li, Y. and Assouar, B.M. (2016) Acoustic Metasurface-Based Perfect Absorber with Deep Subwavelength Thickness. Applied Physics Letters, 108, Article ID: 063502.
https://doi.org/10.1063/1.4941338
[11]  陈传敏, 乔钏熙, 郭兆枫, 等. 半主动式薄膜型声学超材料超低频隔声特性研究[J]. 噪声与振动控制, 2023, 43(3): 60-65.
[12]  张健, 周奇郑, 王德石, 等. 局域共振型薄膜材料隔声机理与调控规律研究[J]. 噪声与振动控制, 2021, 41(3): 234-240.
[13]  周国建, 吴九汇, 路宽, 等. 多态反共振协同型薄膜声学超材料低频隔声性能[J]. 西安交通大学学报, 2020, 54(1): 64-74.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133