Intercropping, particularly the combination of maize and soybeans, has been widely recognized for its potential to improve nitrogen uptake and promote sustainable agriculture. This study examines the patterns of nitrogen uptake in maize and soybean intercropping systems under different growth stages and phosphorus fertilization levels and investigates the influence of nitrogen uptake on growth parameters such as plant height, leaf area, and biomass accumulation in the maize/soybean intercrop under different phosphorus fertilization regimes. The study also collected chlorophyll samples at different growth stages of maize in monoculture and intercropping with maize or soybean. The results showed that plant height was greater in V10 in both fertilized and unfertilized treatments for intercropped maize and soybean, and chlorophyll concentration was higher in VT intercropped maize. The results also showed a higher accumulation of biomass. Understanding the growth dynamics of these plants in monoculture and intercropping systems and the impact of fertilization practices is crucial for optimizing crop productivity and sustainability in agricultural systems.
References
[1]
Nurgi, N., Tana, T., Dechassa, N., Tesso, B. and Alemayehu, Y. (2023) Effect of Spatial Arrangement of Faba Bean Variety Intercropping with Maize on Yield and Yield Components of the Crops. Heliyon, 9, e16751. https://doi.org/10.1016/j.heliyon.2023.e16751
[2]
Temeche, D., Getachew, E., Hailu, G. and Abebe, A. (2022) Effect of Sorghum-Mung Bean Intercropping on Sorghum-Based Cropping System in the Lowlands of North Shewa, Ethiopia. Advances in Agriculture, 2022, Article ID: 6987871. https://doi.org/10.1155/2022/6987871
[3]
Namatsheve, T., Chikowo, R., Corbeels, M., Mouquet-Rivier, C., Icard-Vernière, C. and Cardinael, R. (2021) Maize-Cowpea Intercropping as an Ecological Intensification Option for Low Input Systems in Sub-Humid Zimbabwe: Productivity, Biological N2-Fixation and Grain Mineral Content. Field Crops Research, 263, Article ID: 108052. https://doi.org/10.1016/j.fcr.2020.108052
[4]
Fan, Y., Wang, Z., Liao, D., Raza, M.A., Wang, B., Zhang, J., et al. (2020) Uptake and Utilization of Nitrogen, Phosphorus and Potassium as Related to Yield Advantage in Maize-Soybean Intercropping under Different Row Configurations. Scientific Reports, 10, Article No. 9504. https://doi.org/10.1038/s41598-020-66459-y
[5]
Kaci, G., Ouaret, W. and Rahmoune, B. (2022) Wheat-Faba Bean Intercrops Improve Plant Nutrition, Yield, and Availability of Nitrogen (N) and Phosphorus (P) in Soil. Agronomy Research, 20, 603-616.
[6]
Wu, H., Chen, S., Huang, Z., Huang, T., Tang, X., He, L., et al. (2024) Effects of Intercropping and Nitrogen Application on Soil Fertility and Microbial Communities in Peanut Rhizosphere Soil. Agronomy, 14, Article No. 635. https://doi.org/10.3390/agronomy14030635
[7]
Kermah, M., Franke, A.C., Adjei-Nsiah, S., Ahiabor, B.D.K., Abaidoo, R.C. and Giller, K.E. (2017) Maize-grain Legume Intercropping for Enhanced Resource Use Efficiency and Crop Productivity in the Guinea Savanna of Northern Ghana. Field Crops Research, 213, 38-50. https://doi.org/10.1016/j.fcr.2017.07.008
[8]
Ndayisaba, P.C., Kuyah, S., Midega, C.A.O., Mwangi, P.N. and Khan, Z.R. (2021) Intercropping Desmodium and Maize Improves Nitrogen and Phosphorus Availability and Performance of Maize in Kenya. Field Crops Research, 263, Article ID: 108067. https://doi.org/10.1016/j.fcr.2021.108067
[9]
Latati, M., Aouiche, A.R. and Nazih, Y.R. (2018) Intercropping Maize—Common Bean Enhances Microbial Carbon and Nitrogen in Low-Phosphorus Soil under Mediterranean Conditions. RUDN Journal of Agronomy and Animal Industries, 13, 177-184. https://doi.org/10.22363/2312-797x-2018-13-3-177-184
[10]
Shao, Z., Wang, X., Gao, Q., Zhang, H., Yu, H., Wang, Y., et al. (2020) Root Contact between Maize and Alfalfa Facilitates Nitrogen Transfer and Uptake Using Techniques of Foliar 15N-Labeling. Agronomy, 10, Article No. 360. https://doi.org/10.3390/agronomy10030360
[11]
Nasar, J., Zhao, C.J., Khan, R., Gul, H., Gitari, H., Shao, Z., et al. (2023) Maize-Soybean Intercropping at Optimal N Fertilization Increases the N Uptake, N Yield and N Use Efficiency of Maize Crop by Regulating the N Assimilatory Enzymes. Frontiers in Plant Science, 13, Article ID: 1077948. https://doi.org/10.3389/fpls.2022.1077948
[12]
Latati, M., Aouiche, A., Tellah, S., Laribi, A., Benlahrech, S., Kaci, G., et al. (2017) Intercropping Maize and Common Bean Enhances Microbial Carbon and Nitrogen Availability in Low Phosphorus Soil under Mediterranean Conditions. European Journal of Soil Biology, 80, 9-18. https://doi.org/10.1016/j.ejsobi.2017.03.003
[13]
Latati, M., Blavet, D., Alkama, N., Laoufi, H., Drevon, J.J., Gérard, F., et al. (2014) The Intercropping Cowpea-Maize Improves Soil Phosphorus Availability and Maize Yields in an Alkaline Soil. Plant and Soil, 385, 181-191. https://doi.org/10.1007/s11104-014-2214-6
[14]
Latati, M., Pansu, M., Drevon, J. and Mohemed, S. (2013) Advantage of Intercropping Maize (Zea mays L.) and Common Bean (Phaseolus vulgaris L.) on Yield and Nitrogen Uptake in Northeast Algeria. International Journal of Research in Applied Sciences, 1, 23-29.
[15]
Malunga, I., Lelei, J.J. and Makumba, W. (2017) Effect of Mineral Nitrogen and Legume Intercrops on Maize (Zea mays L.) Nitrogen Uptake, Nutrient Use Efficiency and Yields in Chitedze and Zomba, Malawi. Sustainable Agriculture Research, 7, 64-79. https://doi.org/10.5539/sar.v7n1p64
[16]
Rupp, H., Tauchnitz, N. and Meissner, R. (2024) The Influence of Increasing Mineral Fertilizer Application on Nitrogen Leaching of Arable Land and Grassland—Results of a Long-Term Lysimeter Study. Frontiers in Soil Science, 4, Article ID: 1345073. https://doi.org/10.3389/fsoil.2024.1345073
[17]
Xu, Z., Li, C., Zhang, C., Yu, Y., van der Werf, W. and Zhang, F. (2020) Intercropping Maize and Soybean Increases Efficiency of Land and Fertilizer Nitrogen Use; a Meta-Analysis. Field Crops Research, 246, Article ID: 107661. https://doi.org/10.1016/j.fcr.2019.107661
[18]
Nurgi, N., Tana, T., Dechassa, N., Alemayehu, Y. and Tesso, B. (2023) Effects of Planting Density and Variety on Productivity of Maize-Faba Bean Intercropping System. Heliyon, 9, e12967. https://doi.org/10.1016/j.heliyon.2023.e12967
[19]
Schuster, J., Mittermayer, M., Maidl, F., Nätscher, L. and Hülsbergen, K. (2022) Spatial Variability of Soil Properties, Nitrogen Balance and Nitrate Leaching Using Digital Methods on Heterogeneous Arable Fields in Southern Germany. Precision Agriculture, 24, 647-676. https://doi.org/10.1007/s11119-022-09967-3
[20]
Kamara, A.Y., Tofa, A.I., Ademulegun, T., Solomon, R., Shehu, H., Kamai, N., et al. (2017) Maize-Soybean Intercropping for Sustainable Intensification of Cereal-Legume Cropping Systems in Northern Nigeria. Experimental Agriculture, 55, 73-87. https://doi.org/10.1017/s0014479717000564
[21]
Nyoki, D. and Ndakidemi, P.A. (2018) Yield Response of Intercropped Soybean and Maize under Rhizobia (Bradyrhizobium japonicum) Inoculation and P and K Fertilization. Communications in Soil Science and Plant Analysis, 49, 1168-1185. https://doi.org/10.1080/00103624.2018.1455846
[22]
Liu, Y., Bai, M., Shen, F., Wu, Z., Yang, J., Li, N., et al. (2024) Enhancing Soybean and Maize Yields through Improved Nitrogen and Soil Water Use Efficiencies: A 40-Year Study on the Impact of Farmyard Manure Amendment in Northeast China. Plants, 13, Article No. 500. https://doi.org/10.3390/plants13040500
[23]
Shao, Z., Zheng, C., Postma, J.A., Gao, Q. and Zhang, J. (2024) More N Fertilizer, More Maize, and Less Alfalfa: Maize Benefits from Its Higher N Uptake per Unit Root Length. Frontiers in Plant Science, 15, Article ID: 1338521. https://doi.org/10.3389/fpls.2024.1338521
[24]
Mupangwa, W., Nyagumbo, I., Liben, F., Chipindu, L., Craufurd, P. and Mkuhlani, S. (2021) Maize Yields from Rotation and Intercropping Systems with Different Legumes under Conservation Agriculture in Contrasting Agro-Ecologies. Agriculture, Ecosystems & Environment, 306, Article ID: 107170. https://doi.org/10.1016/j.agee.2020.107170
[25]
Hidoto, L. and Markos, D. (2021) Effects of Maize/Legume Intercropping on Grain Yield of Component Crops, Land Productivity and Profitability under Conservation Agriculture. World Journal of Innovative Research, 11, 46-51.
[26]
Silberg, T.R., Richardson, R.B. and Lopez, M.C. (2020) Maize Farmer Preferences for Intercropping Systems to Reduce Striga in Malawi. Food Security, 12, 269-283. https://doi.org/10.1007/s12571-020-01013-2
[27]
Huss, C.P., Holmes, K.D. and Blubaugh, C.K. (2022) Benefits and Risks of Intercropping for Crop Resilience and Pest Management. Journal of Economic Entomology, 115, 1350-1362. https://doi.org/10.1093/jee/toac045
[28]
Takele, E., Mekonnen, Z., Tsegaye, D. and Abebe, A. (2017) Effect of Intercropping of Legumes and Rates of Nitrogen Fertilizer on Yield and Yield Components of Maize (Zea mays L.) at Arba Minch. American Journal of Plant Sciences, 8, 2159-2179. https://doi.org/10.4236/ajps.2017.89145
[29]
Pelech, E.A., Evers, J.B., Pederson, T.L., Drag, D.W., Fu, P. and Bernacchi, C.J. (2022) Leaf, Plant, to Canopy: A Mechanistic Study on Aboveground Plasticity and Plant Density within a Maize-Soybean Intercrop System for the Midwest, USA. Plant, Cell & Environment, 46, 405-421. https://doi.org/10.1111/pce.14487
[30]
van Es, H. (2023) Cold Climate Factors in Nitrogen Management for Maize. Agriculture, 14, Article No. 85. https://doi.org/10.3390/agriculture14010085
[31]
Ariel, C.E. (2013) Effects of Two Plant Arrangements in Corn (Zea mays L.) and Soybean (Glycine max L. Merrill) Intercropping on Soil Nitrogen and Phosphorus Status and Growth of Component Crops at an Argentinean Argiudoll. American Journal of Agriculture and Forestry, 1, 22-31. https://doi.org/10.11648/j.ajaf.20130102.11
[32]
Li, Y., He, N., Hou, J., Xu, L., Liu, C., Zhang, J., et al. (2018) Factors Influencing Leaf Chlorophyll Content in Natural Forests at the Biome Scale. Frontiers in Ecology and Evolution, 6, Article No. 64. https://doi.org/10.3389/fevo.2018.00064
[33]
Olubode, O.O. (2019) Influence of Seasonal Variability of Precipitation and Temperature on Performances of Pawpaw Varieties Intercropped with Cucumber. Scientia Horticulturae, 243, 622-644. https://doi.org/10.1016/j.scienta.2018.06.007
[34]
Nwokoro, C.C., Kreye, C., Necpalova, M., Adeyemi, O., Barthel, M., Pypers, P., et al. (2022) Cassava-Maize Intercropping Systems in Southern Nigeria: Radiation Use Efficiency, Soil Moisture Dynamics, and Yields of Component Crops. Field Crops Research, 283, Article ID: 108550. https://doi.org/10.1016/j.fcr.2022.108550
[35]
Raza, M.A., Yasin, H.S., Gul, H., Qin, R., Mohi Ud Din, A., Khalid, M.H.B., et al. (2022) Maize/Soybean Strip Intercropping Produces Higher Crop Yields and Saves Water under Semi-Arid Conditions. Frontiers in Plant Science, 13, Article ID: 1006720. https://doi.org/10.3389/fpls.2022.1006720
[36]
Morugán-Coronado, A., Linares, C., Gómez-López, M.D., Faz, Á. and Zornoza, R. (2020) The Impact of Intercropping, Tillage and Fertilizer Type on Soil and Crop Yield in Fruit Orchards under Mediterranean Conditions: A Meta-Analysis of Field Studies. Agricultural Systems, 178, Article ID: 102736. https://doi.org/10.1016/j.agsy.2019.102736
[37]
Silva, J. and Uchida, R. (2000) Essential Nutrients for Plant Growth: Nutrient Functions and Deficiency Symptoms. Plant Nutrient Management in Hawaii’s Soils, Approaches for Tropical and Subtropical Agriculture, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, 31-55.
[38]
Tolera, A., Dagne, W. and Tolessa, D. (2019) Nitrogen Use Efficiency and Yield of Maize Varieties as Affected by Nitrogen Rate in Mid Altitude Areas of Western Ethiopia. 1-30.
[39]
Kutamahufa, M., Matare, L., Soropa, G., Mashavakure, N., Svotwa, E. and Mashingaidze, A.B. (2021) Forage Legumes Exhibit a Differential Potential to Compete against Maize and Weeds and to Restore Soil Fertility in a Maize-Forage Legume Intercrop. Acta Agriculturae Scandinavica, Section B—Soil & Plant Science, 72, 127-141. https://doi.org/10.1080/09064710.2021.1998593
[40]
Mucheru-Muna, M., Pypers, P., Mugendi, D., Kung’u, J., Mugwe, J., Merckx, R., et al. (2010) A Staggered Maize-legume Intercrop Arrangement Robustly Increases Crop Yields and Economic Returns in the Highlands of Central Kenya. Field Crops Research, 115, 132-139. https://doi.org/10.1016/j.fcr.2009.10.013
[41]
Adhikari, K., Bhandari, S., Aryal, K., Mahato, M. and Shrestha, J. (2021) Effect of Different Levels of Nitrogen on Growth and Yield of Hybrid Maize (Zea mays L.) Varieties. Journal of Agriculture and Natural Resources, 4, 48-62. https://doi.org/10.3126/janr.v4i2.33656
[42]
Ronner, E., Thuijsman, E., Ebanyat, P., Descheemaeker, K. and Giller, K.E. (2021) Intercropping of Climbing Bean (Phaseolus vulgaris, L.) and East African Highland Banana (Musa Spp.) in the Ugandan Highlands. Experimental Agriculture, 57, 1-14. https://doi.org/10.1017/s0014479720000411
[43]
Karanja, S.M., Kibe, A.M., Karogo, P.N. and Mwangi, M. (2014) Effects of Intercrop Population Density and Row Orientation on Growth and Yields of Sorghum—Cowpea Cropping Systems in Semi Arid Rongai, Kenya. Journal of Agricultural Science, 6, 34-43. https://doi.org/10.5539/jas.v6n5p34
[44]
Couvreur, T.L.P., Dauby, G., Blach‐Overgaard, A., Deblauwe, V., Dessein, S., Droissart, V., et al. (2020) Tectonics, Climate and the Diversification of the Tropical African Terrestrial Flora and Fauna. Biological Reviews, 96, 16-51. https://doi.org/10.1111/brv.12644
[45]
Tsubo, M. and Walker, S. (2004) Shade Effects on Phaseolus vulgaris L. Intercropped with Zea mays L. under Well-Watered Conditions. Journal of Agronomy and Crop Science, 190, 168-176. https://doi.org/10.1111/j.1439-037x.2004.00089.x
[46]
Huang, C., Liu, Q., Li, X. and Zhang, C. (2019) Effect of Intercropping on Maize Grain Yield and Yield Components. Journal of Integrative Agriculture, 18, 1690-1700. https://doi.org/10.1016/s2095-3119(19)62648-1
[47]
Kermah, M., Franke, A.C., Adjei-Nsiah, S., Ahiabor, B.D.K., Abaidoo, R.C. and Giller, K.E. (2017) Maize-Grain Legume Intercropping for Enhanced Resource Use Efficiency and Crop Productivity in the Guinea Savanna of Northern Ghana. Field Crops Research, 213, 38-50. https://doi.org/10.1016/j.fcr.2017.07.008
[48]
Salomons, M., et al. (2018) Intercropping in Zimbabwe Conservation Agriculture Systems Using a Farmer-Participatory Research Approach. African Journal of Agricultural Research, 13, 1531-1539. https://doi.org/10.5897/ajar2018.13238
[49]
Gitari, H.I., Karanja, N.N., Gachene, C.K.K., Kamau, S., Sharma, K. and Schulte-Geldermann, E. (2018) Nitrogen and Phosphorous Uptake by Potato (Solanum tuberosum L.) and Their Use Efficiency under Potato-Legume Intercropping Systems. Field Crops Research, 222, 78-84. https://doi.org/10.1016/j.fcr.2018.03.019
[50]
Nyawade, S., Karanja, N., Gachene, C., Parker, M. and Schulte-Geldermann, E. (2018) Susceptibility of Soil Organic Matter Fractions to Soil Erosion under Potato-Legume Intercropping Systems in Central Kenya. Journal of Soil and Water Conservation, 73, 567-576. https://doi.org/10.2489/jswc.73.5.567
[51]
Chen, P., Du, Q., Liu, X., Zhou, L., Hussain, S., Lei, L., et al. (2017) Effects of Reduced Nitrogen Inputs on Crop Yield and Nitrogen Use Efficiency in a Long-Term Maize-Soybean Relay Strip Intercropping System. PLOS ONE, 12, e0184503. https://doi.org/10.1371/journal.pone.0184503
[52]
Mndzebele, B., Ncube, B., Fessehazion, M., Mabhaudhi, T., Amoo, S., du Plooy, C., et al. (2020) Effects of Cowpea-Amaranth Intercropping and Fertiliser Application on Soil Phosphatase Activities, Available Soil Phosphorus, and Crop Growth Response. Agronomy, 10, Article No. 79. https://doi.org/10.3390/agronomy10010079
[53]
Raza, M.A., Bin Khalid, M.H., Zhang, X., Feng, L.Y., Khan, I., Hassan, M.J., et al. (2019) Effect of Planting Patterns on Yield, Nutrient Accumulation and Distribution in Maize and Soybean under Relay Intercropping Systems. Scientific Reports, 9, Article No. 4947. https://doi.org/10.1038/s41598-019-41364-1
[54]
Khalid, M.H.B., Cui, L., Abbas, G., Raza, M.A., Anwar, A., Ahmed, Z., et al. (2023) Effect of Row Spacing under Maize-Soybean Relay Intercropping System on Yield, Competition, and Economic Returns. Turkish Journal of Agriculture and Forestry, 47, 390-401. https://doi.org/10.55730/1300-011x.3095
[55]
Daryanto, S., Fu, B., Zhao, W., Wang, S., Jacinthe, P. and Wang, L. (2020) Ecosystem Service Provision of Grain Legume and Cereal Intercropping in Africa. Agricultural Systems, 178, Article ID: 102761. https://doi.org/10.1016/j.agsy.2019.102761
[56]
Nassary, E.K., Baijukya, F. and Ndakidemi, P.A. (2020) Productivity of Intercropping with Maize and Common Bean over Five Cropping Seasons on Smallholder Farms of Tanzania. European Journal of Agronomy, 113, Article ID: 125964. https://doi.org/10.1016/j.eja.2019.125964
[57]
Li, C., Hoffland, E., Kuyper, T.W., Yu, Y., Zhang, C., Li, H., et al. (2020) Syndromes of Production in Intercropping Impact Yield Gains. Nature Plants, 6, 653-660. https://doi.org/10.1038/s41477-020-0680-9
[58]
Li, C., Kuyper, T.W., van der Werf, W., Zhang, J., Li, H., Zhang, F., et al. (2018) Testing for Complementarity in Phosphorus Resource Use by Mixtures of Crop Species. Plant and Soil, 439, 163-177. https://doi.org/10.1007/s11104-018-3732-4
[59]
Fu, Z., Zhou, L., Chen, P., Du, Q., Pang, T., Song, C., et al. (2019) Effects of Maize-Soybean Relay Intercropping on Crop Nutrient Uptake and Soil Bacterial Community. Journal of Integrative Agriculture, 18, 2006-2018. https://doi.org/10.1016/s2095-3119(18)62114-8
[60]
Ravensbergen, P. (2018) Trade-Off Analysis of Integrating Legumes in East-African Maize Cropping Systems.
[61]
Sogoba, B., Traoré, B., Safia, A., Samaké, O.B., Dembélé, G., Diallo, S., et al. (2020) On-farm Evaluation on Yield and Economic Performance of Cereal-Cowpea Intercropping to Support the Smallholder Farming System in the Soudano-Sahelian Zone of Mali. Agriculture, 10, Article No. 214. https://doi.org/10.3390/agriculture10060214
[62]
Kolawole, G.O. (2012) Effect of Phosphorus Fertilizer Application on the Performance of Maize/Soybean Intercrop in the Southern Guinea Savanna of Nigeria. Archives of Agronomy and Soil Science, 58, 189-198. https://doi.org/10.1080/03650340.2010.512723
[63]
Nyoki, D. (2014) Effects of Bradyrhizobium japonicum and Phosphorus Supplementation on the Productivity of Legumes. International Journal of Plant & Soil Science, 3, 894-910. https://doi.org/10.9734/ijpss/2014/8412
[64]
Mudare, S., Kanomanyanga, J., Jiao, X., Mabasa, S., Lamichhane, J.R., Jing, J., et al. (2022) Yield and Fertilizer Benefits of Maize/Grain Legume Intercropping in China and Africa: A Meta-Analysis. Agronomy for Sustainable Development, 42, Article No. 81. https://doi.org/10.1007/s13593-022-00816-1
[65]
Jiao, N., Wang, J., Ma, C., Zhang, C., Guo, D., Zhang, F., et al. (2021) The Importance of Aboveground and Belowground Interspecific Interactions in Determining Crop Growth and Advantages of Peanut/Maize Intercropping. The Crop Journal, 9, 1460-1469. https://doi.org/10.1016/j.cj.2020.12.004
[66]
Liben, F.M., Tadesse, B., Tola, Y.T., Wortmann, C.S., Kim, H.K. and Mupangwa, W. (2018) Conservation Agriculture Effects on Crop Productivity and Soil Properties in Ethiopia. Agronomy Journal, 110, 758-767. https://doi.org/10.2134/agronj2017.07.0384