全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于SiO2@BiOBr/rGO的光电化学传感器超灵敏检测多巴胺
Ultra-Sensitive Detection of DA by Photoelectrochemical Sensor Based on SiO2@BiOBr/rGO

DOI: 10.12677/aac.2024.143019, PP. 155-163

Keywords: 二氧化硅,溴氧化铋,还原氧化石墨烯,多巴胺,光电化学传感器
SiO2
, BiOBr, rGO, Dopamine (DA), Photoelectrochemical Sensor

Full-Text   Cite this paper   Add to My Lib

Abstract:

本研究对多巴胺(DA)进行光电化学检测,通过制备二氧化硅悬浮液(SiO2)、还原氧化石墨烯(rGO)、溴氧化铋(BiOBr)三种材料进而制备SiO2@BiOBr/rGO复合材料并构筑光电化学传感器,SiO2@BiOBr/rGO在有光时检测多巴胺时有显著的光电流响应。石墨烯具有优异的导电性和显著的机械强度。二氧化硅(SiO2)是一种成本低、高生物相容性、热稳定性、透光性能好、带隙窄的材料。BiOBr作为一种典型的半导体光电材料,拥有独特的层状四方结构,花状BiOBr由层状结构组成,有利于进一步抑制空穴–电荷重组,可提高其光电性能。该光电传感器检测多巴胺时的浓度范围为2~300 μmol/L,检出限为0.67 μmol/L,表明传感器对多巴胺有较好的检测效果。该SiO2@BiOBr/rGO光电化学传感器具有稳定性好、灵敏度高等优点,对多巴胺的检测具有重要的意义,希望其在监测细胞内多巴胺浓度水平方面具有广阔的应用前景。
This study aimed to prepare SiO2@BiOBr/rGO composite materials by combining SiO2 suspension, reduced graphene oxide (rGO), and bismuth oxybromide (BiOBr) for the construction of relevant photoelectrochemical sensors to detect dopamine (DA). Under visible light irradiation, SiO2@BiOBr/ rGO exhibited a significant photocurrent response during dopamine detection. Graphene has excellent electrical conductivity and remarkable mechanical strength. SiO2 has low production cost, high biocompatibility, thermal stability, good transparency, and a narrow-forbidden bandgap. As a typical semiconductor photoelectric material, BiOBr has a unique layered tetragonal structure. Flower-like BiOBr is composed of layered structures, which is conducive to further suppressing hole-charge recombination and improving its photoelectric performance. The concentration range of dopamine detected by this photoelectric sensor was 2~300 μmol/L, with a detection limit of 0.67 μmol/L, indicating that the sensor had a good detection effect on dopamine. This SiO2@BiOBr/rGO photoelectrochemical sensor has the advantages of good stability, high sensitivity and so on, and is of great significance for the detection of dopamine. It is expected to have broad application prospects in monitoring intracellular dopamine concentration levels.

References

[1]  Tobler, P.N., Fiorillo, C.D. and Schultz, W. (2005) Adaptive Coding of Reward Value by Dopamine Neurons. Science, 307, 1642-1645.
https://doi.org/10.1126/science.1105370
[2]  Wang, L., Chen, J., Wang, J., Li, H., Chen, C., Feng, J., et al. (2021) Flexible Dopamine-Sensing Fiber Based on Potentiometric Method for Long-Term Detection in Vivo. Science China Chemistry, 64, 1763-1769.
https://doi.org/10.1007/s11426-021-1039-7
[3]  Demuru, S., Nela, L., Marchack, N., Holmes, S.J., Farmer, D.B., Tulevski, G.S., et al. (2018) Scalable Nanostructured Carbon Electrode Arrays for Enhanced Dopamine Detection. ACS Sensors, 3, 799-805.
https://doi.org/10.1021/acssensors.8b00043
[4]  Rusheen, A.E., Gee, T.A., Jang, D.P., Blaha, C.D., Bennet, K.E., Lee, K.H., et al. (2020) Evaluation of Electrochemical Methods for Tonic Dopamine Detection in Vivo. TrAC Trends in Analytical Chemistry, 132, Article ID: 116049.
https://doi.org/10.1016/j.trac.2020.116049
[5]  Spiller, D.G., Wood, C.D., Rand, D.A. and White, M.R.H. (2010) Measurement of Single-Cell Dynamics. Nature, 465, 736-745.
https://doi.org/10.1038/nature09232
[6]  Zhang, J., Zhou, J., Pan, R., Jiang, D., Burgess, J.D. and Chen, H. (2018) New Frontiers and Challenges for Single-Cell Electrochemical Analysis. ACS Sensors, 3, 242-250.
https://doi.org/10.1021/acssensors.7b00711
[7]  Zhou, J., Jiang, D. and Chen, H. (2017) Nanoelectrochemical Architectures for High-Spatial-Resolution Single Cell Analysis. Science China Chemistry, 60, 1277-1284.
https://doi.org/10.1007/s11426-017-9109-7
[8]  Shah, P., Zhu, X., Zhang, X., He, J. and Li, C. (2016) Microelectromechanical System-Based Sensing Arrays for Comparative in Vitro Nanotoxicity Assessment at Single Cell and Small Cell-Population Using Electrochemical Impedance Spectroscopy. ACS Applied Materials & Interfaces, 8, 5804-5812.
https://doi.org/10.1021/acsami.5b11409
[9]  Zhu, W., Wang, J., Luo, H., Luo, B., Li, X., Liu, S., et al. (2023) Electrical Characterization and Analysis of Single Cells and Related Applications. Biosensors, 13, Article 907.
https://doi.org/10.3390/bios13100907
[10]  Hu, K., Nguyen, T.D.K., Rabasco, S., Oomen, P.E. and Ewing, A.G. (2020) Chemical Analysis of Single Cells and Organelles. Analytical Chemistry, 93, 41-71.
https://doi.org/10.1021/acs.analchem.0c04361
[11]  Liu, Y., Yu, S., Chen, J., Wang, C., Li, H., Jiang, D., et al. (2022) Organic Molecular Probe Enabled Ionic Current Rectification toward Subcellular Detection of Glutathione with High Selectivity, Sensitivity, and Recyclability. ACS Sensors, 7, 3272-3277.
https://doi.org/10.1021/acssensors.2c01897
[12]  He, X. and Ewing, A.G. (2022) Anionic Species Regulate Chemical Storage in Nanometer Vesicles and Amperometrically Detected Exocytotic Dynamics. Journal of the American Chemical Society, 144, 4310-4314.
https://doi.org/10.1021/jacs.2c00581
[13]  Huang, K., Wang, Y., Qin, Z., Liu, H., Zhang, H., Wang, J., et al. (2023) Ultrafast Subcellular Biolabeling and Bioresponsive Real-Time Monitoring for Targeting Cancer Theranostics. ACS Sensors, 8, 3563-3573.
https://doi.org/10.1021/acssensors.3c01210
[14]  Zhang, X., Hatamie, A. and Ewing, A.G. (2020) Simultaneous Quantification of Vesicle Size and Catecholamine Content by Resistive Pulses in Nanopores and Vesicle Impact Electrochemical Cytometry. Journal of the American Chemical Society, 142, 4093-4097.
https://doi.org/10.1021/jacs.9b13221
[15]  Lotharius, J. and Brundin, P. (2002) Pathogenesis of Parkinson’s Disease: Dopamine, Vesicles and α-Synuclein. Nature Reviews Neuroscience, 3, 932-942.
https://doi.org/10.1038/nrn983
[16]  Guo, X., Zhen, M., Liu, H. and Liu, L. (2015) BiOBr-BiOI Microsphere Assembled with Atom-Thick Ultrathin Nanosheets and Its High Photocatalytic Activity. RSC Advances, 5, 24777-24782.
https://doi.org/10.1039/c5ra01086a
[17]  Luo, Y., Zhang, C., Zheng, B., Geng, X. and Debliquy, M. (2017) Hydrogen Sensors Based on Noble Metal Doped Metal-Oxide Semiconductor: A Review. International Journal of Hydrogen Energy, 42, 20386-20397.
https://doi.org/10.1016/j.ijhydene.2017.06.066
[18]  Chakraborty, I. and Mascharak, P.K. (2016) Mesoporous Silica Materials and Nanoparticles as Carriers for Controlled and Site-Specific Delivery of Gaseous Signaling Molecules. Microporous and Mesoporous Materials, 234, 409-419.
https://doi.org/10.1016/j.micromeso.2016.07.028
[19]  Moreira, A.F., Dias, D.R. and Correia, I.J. (2016) Stimuli-Responsive Mesoporous Silica Nanoparticles for Cancer Therapy: A Review. Microporous and Mesoporous Materials, 236, 141-157.
https://doi.org/10.1016/j.micromeso.2016.08.038
[20]  Song, Y., Li, Y., Xu, Q. and Liu, Z. (2016) Mesoporous Silica Nanoparticles for Stimuli-Responsive Controlled Drug Delivery: Advances, Challenges, and Outlook. International Journal of Nanomedicine, 12, 87-110.
https://doi.org/10.2147/ijn.s117495
[21]  Koutsioukis, A., Belessi, V. and Georgakilas, V. (2021) Solid Phase Functionalization of MWNTs: An Eco-Friendly Approach for Carbon-Based Conductive Inks. Green Chemistry, 23, 5442-5448.
https://doi.org/10.1039/d1gc01043c
[22]  Yuwen, L., Xu, F., Xue, B., Luo, Z., Zhang, Q., Bao, B., et al. (2014) General Synthesis of Noble Metal (Au, Ag, Pd, Pt) Nanocrystal Modified MoS2 Nanosheets and the Enhanced Catalytic Activity of Pd-MoS2 for Methanol Oxidation. Nanoscale, 6, 5762-5769.
https://doi.org/10.1039/c3nr06084e

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133