全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Influence of Solvent onto Chemical Extraction of America-Type Coconut (Coco nucifera L.) Fbers: Analysis of Physicochemical, Mechanical and Morphological Properties

DOI: 10.4236/jtst.2024.103005, PP. 64-81

Keywords: Chemical Extraction, Cellulose, Coco nucifera L. Fibers, Elasto-Plastic, Textiles

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this study, the natural fibers from Coconuts of the species Coco nucifera L. were Chemically extracted in different solvents such as sodium hydroxide (SH), acetone (AC) and sodium hydroxide-acetone (SHA) for their applications in the textile industries. Structural, morphological and physico-mechanical characterizations such as X-ray diffraction (XRD), Fourier transform infrared spectrometry (FTIR), scanned electron microscopy (SEM), measurements of density, Young’s modulus, water absorption rate and humidity were evaluated. The XRD and FTIR results show that Coco nucifera L. fibers contains type I cellulose. Mechanical characterizations were also carried out. These results show that by varying the different solvents used, the physico-chemical, mechanical and morphological properties of the fibers change, which implies that the solvent has an influence on the properties of these fibers. The fibers extracted by the sodium hydroxide-acetone mixture have a linear density of 1.636, the percentage of water absorption is 62.428%, the percentage of moisture absorption 9.605% compared to other values in the literature shows that this solvent mixture improves the properties of coconut fibers which contain type I cellulose. The tensile stress is 0.013 GPa, the percentage strain is 49.836% and the Young’s modulus is 0.114 GPa as well as the percentage elongation show that these fibers are elasto-plastic. The values obtained mean that these fibers are suitable for use in textiles.

References

[1]  Haily, E., Zari, N., Bouhfid, R. and Qaiss, A. (2023) Natural Fibers as an Alternative to Synthetic Fibers in the Reinforcement of Phosphate Sludge-Based Geopolymer Mortar. Journal of Building Engineering, 67, Article ID: 105947.
https://doi.org/10.1016/j.jobe.2023.105947
[2]  Kicińska-Jakubowska, A., Bogacz, E. and Zimniewska, M. (2012) Review of Natural Fibers. Part I—Vegetable Fibers. Journal of Natural Fibers, 9, 150-167.
https://doi.org/10.1080/15440478.2012.703370
[3]  Khan, A., Vijay, R., Singaravelu, D.L., Sanjay, M.R., Siengchin, S., Verpoort, F., et al. (2020) Characterization of Natural Fibers from Cortaderia selloana Grass (Pampas) as Reinforcement Material for the Production of the Composites. Journal of Natural Fibers, 18, 1893-1901.
https://doi.org/10.1080/15440478.2019.1709110
[4]  McGregor, B.A. (2018) Physical, Chemical, and Tensile Properties of Cashmere, Mohair, Alpaca, and Other Rare Animal Fibers. In: Bunsell, A.R., Ed., Handbook of Properties of Textile and Technical Fibres, Elsevier, 105-136.
https://doi.org/10.1016/b978-0-08-101272-7.00004-3
[5]  Titova, M.N. and Sirotina, L.K. (2021) Scenario Modeling and Optimization of Parametric Proportions for the Conjugated Production of Chemical Fibers and Textiles in Conditions of Raw Material Recycling. Fibre Chemistry, 53, 194-198.
https://doi.org/10.1007/s10692-021-10266-2
[6]  Seki, Y., Selli, F., Erdoğan, Ü.H., Atagür, M. and Seydibeyoğlu, M.Ö. (2022) A Review on Alternative Raw Materials for Sustainable Production: Novel Plant Fibers. Cellulose, 29, 4877-4918.
https://doi.org/10.1007/s10570-022-04597-4
[7]  Haman, Z., Korgaï, D., Td, B., Valery, H. and Paul William, H. (2022) Analysis of Some Technological Properties of Textile Fibers from the Banana Tree Stalk. Canadian Journal of Pure and Applied Sciences, 16, 5467-5473.
[8]  Maia, L.C., Alves, A.C. and Leão, C.P. (2019) Implementing Lean Production to Promote Textile and Clothing Industry Sustainability. In: Alves, A., Kahlen, F.J., Flumerfelt, S. and Siriban-Manalang, A., Eds., Lean Engineering for Global Development, Springer, 319-343.
https://doi.org/10.1007/978-3-030-13515-7_11
[9]  Frazier, R.M., Vivas, K.A., Azuaje, I., Vera, R., Pifano, A., Forfora, N., et al. (2024) Beyond Cotton and Polyester: An Evaluation of Emerging Feedstocks and Conversion Methods for the Future of Fashion Industry. Journal of Bioresources and Bioproducts, 9, 130-159.
https://doi.org/10.1016/j.jobab.2024.01.001
[10]  Deugoué, A.B.N., Sikame, N.R.T., Huisken, P.W.M., Tchemou, G., Tiwa, S.T. and Njeugna, E. (2023) Banana-Plantain Fiber Limited Life Geotextiles (PFLLGs): Design and Characterization. Indian Geotechnical Journal, 53, 874-886.
https://doi.org/10.1007/s40098-023-00715-6
[11]  Hussain, M., Levacher, D., Leblanc, N., Zmamou, H., Djeran-Maigre, I., Razakamanantsoa, A., et al. (2023) Analysis of Physical and Mechanical Characteristics of Tropical Natural Fibers for Their Use in Civil Engineering Applications. Journal of Natural Fibers, 20, Article ID: 2164104.
https://doi.org/10.1080/15440478.2022.2164104
[12]  Mohammadhosseini, H., Tahir, M.M., Alaskar, A., Alabduljabbar, H. and Alyousef, R. (2020) Enhancement of Strength and Transport Properties of a Novel Preplaced Aggregate Fiber Reinforced Concrete by Adding Waste Polypropylene Carpet Fibers. Journal of Building Engineering, 27, Article ID: 101003.
https://doi.org/10.1016/j.jobe.2019.101003
[13]  Cherian, B.M., Leão, A.L., de Souza, S.F., Costa, L.M.M., de Olyveira, G.M., Kottaisamy, M., et al. (2011) Cellulose Nanocomposites with Nanofibres Isolated from Pineapple Leaf Fibers for Medical Applications. Carbohydrate Polymers, 86, 1790-1798.
https://doi.org/10.1016/j.carbpol.2011.07.009
[14]  Chang, C., Ginn, B., Livingston, N.K., Yao, Z., Slavin, B., King, M.W., et al. (2020) Medical Fibers and Biotextiles. In: Wagner, W.R., Sakiyama-Elbert, S.E., Zhang, G. and Yaszemski, M.J., Eds., Biomaterials Science, Elsevier, 575-600.
https://doi.org/10.1016/b978-0-12-816137-1.00038-6
[15]  Al Rashid, A., Khalid, M.Y., Imran, R., Ali, U. and Koc, M. (2020) Utilization of Banana Fiber-Reinforced Hybrid Composites in the Sports Industry. Materials, 13, Article 3167.
https://doi.org/10.3390/ma13143167
[16]  Sreejith, M. and Rajeev, R.S. (2021) Fiber Reinforced Composites for Aerospace and Sports Applications. In: Joseph, K., Oksman, K., George, G., Wilson, R. and Appukuttan, S., Eds., Fiber Reinforced Composites, Elsevier, 821-859.
https://doi.org/10.1016/b978-0-12-821090-1.00023-5
[17]  Zhong, Z.W., Hiziroglu, S. and Chan, C.T.M. (2013) Measurement of the Surface Roughness of Wood Based Materials Used in Furniture Manufacture. Measurement, 46, 1482-1487.
https://doi.org/10.1016/j.measurement.2012.11.041
[18]  Helaili, S., Chafra, M. and Chevalier, Y. (2021) Natural Fiber Alfa/Epoxy Randomly Reinforced Composite Mechanical Properties Identification. Structures, 34, 542-549.
https://doi.org/10.1016/j.istruc.2021.07.095
[19]  Wang, B., Gilbert Thio, T.H. and Chong, H.S. (2022) Transparent Conductive Far-Infrared Radiative Film Based on Cotton Pulp (CP) with Carbon Fiber (CF) in Agriculture Greenhouse. Journal of Materials Research and Technology, 19, 1049-1058.
https://doi.org/10.1016/j.jmrt.2022.05.075
[20]  Sathish, S., Prabhu, L., Gokulkumar, S., Karthi, N., Balaji, D. and Vigneshkumar, N. (2021) Extraction, Treatment and Applications of Natural Fibers for Bio-Composites—A Critical Review. International Polymer Processing, 36, 114-130.
https://doi.org/10.1515/ipp-2020-4004
[21]  Patel, R.V., Yadav, A. and Winczek, J. (2023) Physical, Mechanical, and Thermal Properties of Natural Fiber-Reinforced Epoxy Composites for Construction and Automotive Applications. Applied Sciences, 13, Article 5126.
https://doi.org/10.3390/app13085126
[22]  Khan, A., Vijay, R., Singaravelu, D.L., Sanjay, M.R., Siengchin, S., Jawaid, M., et al. (2020) Extraction and Characterization of Natural Fibers from Citrullus lanatus Climber. Journal of Natural Fibers, 19, 621-629.
https://doi.org/10.1080/15440478.2020.1758281
[23]  Sathish, S., Karthi, N., Prabhu, L., Gokulkumar, S., Balaji, D., Vigneshkumar, N., et al. (2021) A Review of Natural Fiber Composites: Extraction Methods, Chemical Treatments and Applications. Materials Today: Proceedings, 45, 8017-8023.
https://doi.org/10.1016/j.matpr.2020.12.1105
[24]  Brígida, A.I.S., Calado, V.M.A., Gonçalves, L.R.B. and Coelho, M.A.Z. (2010) Effect of Chemical Treatments on Properties of Green Coconut Fiber. Carbohydrate Polymers, 79, 832-838.
https://doi.org/10.1016/j.carbpol.2009.10.005
[25]  Leonas, K.K. (2016) The Use of Recycled Fibers in Fashion and Home Products. In: Muthu, S., Ed., Textile Science and Clothing Technology, Springer, 55-77.
https://doi.org/10.1007/978-981-10-2146-6_2
[26]  Ahmad, W., Farooq, S.H., Usman, M., Khan, M., Ahmad, A., Aslam, F., et al. (2020) Effect of Coconut Fiber Length and Content on Properties of High Strength Concrete. Materials, 13, Article 1075.
https://doi.org/10.3390/ma13051075
[27]  Khan, A., Vijay, R., Singaravelu, D.L., Sanjay, M.R., Siengchin, S., Verpoort, F., et al. (2019) Extraction and Characterization of Natural Fiber from Eleusine Indica Grass as Reinforcement of Sustainable Fiber Reinforced Polymer Composites. Journal of Natural Fibers, 18, 1742-1750.
https://doi.org/10.1080/15440478.2019.1697993
[28]  Nagarajan, K.J., Balaji, A.N. and Ramanujam, N.R. (2019) Extraction of Cellulose Nanofibers from Cocos Nucifera Var Aurantiaca Peduncle by Ball Milling Combined with Chemical Treatment. Carbohydrate Polymers, 212, 312-322.
https://doi.org/10.1016/j.carbpol.2019.02.063
[29]  Ott, L.S., Riddell, M.M., O'Neill, E.L. and Carini, G.S. (2018) From Orchids to Biodiesel: Coco Coir as an Effective Drywash Material for Biodiesel Fuel. Fuel Processing Technology, 176, 1-6.
https://doi.org/10.1016/j.fuproc.2018.02.023
[30]  Chopra, L. and Manikanika, (2022) Extraction of Cellulosic Fibers from the Natural Resources: A Short Review. Materials Today: Proceedings, 48, 1265-1270.
https://doi.org/10.1016/j.matpr.2021.08.267
[31]  Jagadeesh, P., Puttegowda, M., Mavinkere Rangappa, S. and Siengchin, S. (2021) A Review on Extraction, Chemical Treatment, Characterization of Natural Fibers and Its Composites for Potential Applications. Polymer Composites, 42, 6239-6264.
https://doi.org/10.1002/pc.26312
[32]  Liu, Y., Li, B., Mao, W., Hu, W., Chen, G., Liu, Y., et al. (2019) Strong Cellulose-Based Materials by Coupling Sodium Hydroxide-Anthraquinone (NaOH-AQ) Pulping with Hot Pressing from Wood. ACS Omega, 4, 7861-7865.
https://doi.org/10.1021/acsomega.9b00411
[33]  Mannai, F., Ammar, M., Yanez, J.G., Elaloui, E. and Moussaoui, Y. (2017) Alkaline Delignification of Cactus Fibres for Pulp and Papermaking Applications. Journal of Polymers and the Environment, 26, 798-806.
https://doi.org/10.1007/s10924-017-0968-7
[34]  Hussin, F.N.N.M., Attan, N. and Wahab, R.A. (2019) Extraction and Characterization of Nanocellulose from Raw Oil Palm Leaves (Elaeis guineensis). Arabian Journal for Science and Engineering, 45, 175-186.
https://doi.org/10.1007/s13369-019-04131-y
[35]  Ali, A., Shaker, K., Nawab, Y., Jabbar, M., Hussain, T., Militky, J., et al. (2016) Hydrophobic Treatment of Natural Fibers and Their Composites—A Review. Journal of Industrial Textiles, 47, 2153-2183.
https://doi.org/10.1177/1528083716654468
[36]  Basu, G., Mishra, L., Jose, S. and Samanta, A.K. (2015) Accelerated Retting Cum Softening of Coconut Fibre. Industrial Crops and Products, 77, 66-73.
https://doi.org/10.1016/j.indcrop.2015.08.012
[37]  El Amri, A., Ouass, A., bensalah, j., Wardighi, Z., Zahra Bouhassane, F., Zarrouk, A., et al. (2023) Extraction and Characterization of Cellulosic Nanocrystals from Stems of the Reed Plant Large-Leaved Cattail (Typha latifolia). Materials Today: Proceedings, 72, 3609-3616.
https://doi.org/10.1016/j.matpr.2022.08.408
[38]  Segal, L., Creely, J.J., Martin, A.E. and Conrad, C.M. (1959) An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer. Textile Research Journal, 29, 786-794.
https://doi.org/10.1177/004051755902901003
[39]  Rao, K.M.M. and Rao, K.M. (2007) Extraction and Tensile Properties of Natural Fibers: Vakka, Date and Bamboo. Composite Structures, 77, 288-295.
https://doi.org/10.1016/j.compstruct.2005.07.023
[40]  Arsyad, M., Wardana, I.N.G., Pratikto, and Irawan, Y.S. (2015) The Morphology of Coconut Fiber Surface under Chemical Treatment. Matéria (Rio de Janeiro), 20, 169-177.
https://doi.org/10.1590/s1517-707620150001.0017
[41]  Rosa, M.F., Medeiros, E.S., Malmonge, J.A., Gregorski, K.S., Wood, D.F., Mattoso, L.H.C., et al. (2010) Cellulose Nanowhiskers from Coconut Husk Fibers: Effect of Preparation Conditions on Their Thermal and Morphological Behavior. Carbohydrate Polymers, 81, 83-92.
https://doi.org/10.1016/j.carbpol.2010.01.059
[42]  Ververis, C., Georghiou, K., Christodoulakis, N., Santas, P. and Santas, R. (2004) Fiber Dimensions, Lignin and Cellulose Content of Various Plant Materials and Their Suitability for Paper Production. Industrial Crops and Products, 19, 245-254.
https://doi.org/10.1016/j.indcrop.2003.10.006
[43]  Bachchan, A.A., Das, P.P. and Chaudhary, V. (2022) Effect of Moisture Absorption on the Properties of Natural Fiber Reinforced Polymer Composites: A Review. Materials Today: Proceedings, 49, 3403-3408.
https://doi.org/10.1016/j.matpr.2021.02.812
[44]  Ashik, K.P., Sharma, R.S. and Guptha, V.L.J. (2018) Investigation of Moisture Absorption and Mechanical Properties of Natural/Glass Fiber Reinforced Polymer Hybrid Composites. Materials Today: Proceedings, 5, 3000-3007.
https://doi.org/10.1016/j.matpr.2018.01.099
[45]  Bujjibabu, G., Das, V.C., Ramakrishna, M. and Nagarjuna, K. (2018) Mechanical and Water Absorption Behavior of Natural Fibers Reinforced Polypropylene Hybrid Composites. Materials Today: Proceedings, 5, 12249-12256.
https://doi.org/10.1016/j.matpr.2018.02.202
[46]  Aizi, D. and Kaid-Harche, M. (2020). Mechanical Behavior of Gypsum Composites Reinforced with Retama monosperma Fibers. Proceedings, 63, Article 40.
https://doi.org/10.3390/proceedings2020063040
[47]  Huda, M.S., Drzal, L.T., Mohanty, A.K. and Misra, M. (2008) Effect of Fiber Surface-Treatments on the Properties of Laminated Biocomposites from Poly (Lactic Acid) (PLA) and Kenaf Fibers. Composites Science and Technology, 68, 424-432.
https://doi.org/10.1016/j.compscitech.2007.06.022
[48]  Roussière, F., Vrévin, L., Burr, D. and Baley, C. (2008) Etude du comportement mécanique en traction de composites polyester/mats de fibres végétales (lin et chanvre). Revue des composites et des matériaux avancés, 18, 209-214.
https://doi.org/10.3166/rcma.18.209-214
[49]  Faruk, O., Bledzki, A.K., Fink, H. and Sain, M. (2012) Biocomposites Reinforced with Natural Fibers: 2000-2010. Progress in Polymer Science, 37, 1552-1596.
https://doi.org/10.1016/j.progpolymsci.2012.04.003
[50]  Baley, C., Le Duigou, A., Bourmaud, A. and Davies, P. (2012) Influence of Drying on the Mechanical Behaviour of Flax Fibres and Their Unidirectional Composites. Composites Part A: Applied Science and Manufacturing, 43, 1226-1233.
https://doi.org/10.1016/j.compositesa.2012.03.005

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133