全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Does There Exist the Applicability Limit of PDE to Describe Physical Phenomena?
—A Personal Survey of Quantization, QED, Turbulence

DOI: 10.4236/wjm.2024.146006, PP. 97-142

Keywords: Superspace, Grassmann Variables, Hamilton-Jacobi Equation, Quantization

Full-Text   Cite this paper   Add to My Lib

Abstract:

What does it mean to study PDE (Partial Differential Equation)? How and what to do “to claim proudly that I’m studying a certain PDE”? Newton mechanic uses mainly ODE (Ordinary Differential Equation) and describes nicely movements of Sun, Moon and Earth etc. Now, so-called quantum phenomenum is described by, say Schr?dinger equation, PDE which explains both wave and particle characters after quantization of ODE. The coupled Maxwell-Dirac equation is also “quantized” and QED (Quantum Electro-Dynamics) theory is invented by physicists. Though it is said this QED gives very good coincidence between theoretical1 and experimental observed quantities, but what is the equation corresponding to QED? Or, is it possible to describe QED by “equation” in naive sense?

References

[1]  Fujita, H. and Sauer, N. (1970) On Existence of Weak Solutions of the Navier-Stokes Equations in Regions with Moving Boundaries. Journal of the Faculty of Science, the University of Tokyo, Section IA, Mathematics, 17, 403-420.
[2]  Inoue, A. and Wakimoto, M. (1977) On Existence of Solutions of the Navier-Stokes Equation in a Time Dependent Domain. Journal of the Faculty of Science, the University of Tokyo, Section IA, Mathematics, 24, 303-319.
[3]  Inoue, A. and Funaki, T. (1979) On a New Derivation of the Navier-Stokes Equation. Communications in Mathematical Physics, 65, 83-90.
https://doi.org/10.1007/bf01940961
[4]  Hopf, E. (1952) Statistical Hydromechanics and Functional Calculus. Indiana University Mathematics Journal, 1, 87-123.
https://doi.org/10.1512/iumj.1952.1.51004
[5]  Gelfand, I.M. (1954) Some Aspects of Functional Analysis and Algebra. International Congress of Mathematicians, Amsterdam, 2-9 September 1954, 253-276.
https://www.mathunion.org/fileadmin/ICM/Proceedings/ICM1954.1/ICM1954.1.ocr.pdf
[6]  Sawyer, W.W. (1955) Prelude to Mathematics. Penguin Books.
[7]  Smolyanov, O.G. and Fomin, S.V. (1976) Measures on Linear Topological Spaces. Russian Mathematical Surveys, 31, 1-53.
https://doi.org/10.1070/rm1976v031n04abeh001553
[8]  Inoue, A. (1999) On a “Hamiltonian Path-Integral” Derivation of the Schrödinger Equation. Osaka Journal of Mathematics, 36, 861-904.
[9]  Inoue, A. (2014) Definition and Characterization of Supersmooth Functions on Superspace Based on Fréchet-Grassmann Algebra. arXiv: 0910.3831.
https://doi.org/10.48550/arXiv.0910.3831
[10]  Inoue, A. (2014) Remarks on Elementary Integral Calculus for Supersmooth Functions on Superspace. arXiv: 1408.3874.
https://doi.org/10.48550/arXiv.1408.3874
[11]  Inoue, A. (1992) Foundation of Real Analysis on the Superspace Over the -Dimensional Fréchet-Grassmann Algebra. Journal of the Faculty of Science, the University of Tokyo, Section IA, Mathematics, 39, 419-474.
[12]  Inoue, A. and Maeda, Y. (2003) On a Construction of a Good Parametrix for the Pauli Equation by Hamiltonian Path-Integral Method—An Application of Superanalysis. Japanese Journal of Mathematics, 29, 27-107.
[13]  Chi, M.Y. (1958) On the Cauchy Problem for a Class of Hyperbolic Equations with the Initial Data on the Parabolic Degenerating Line. Acta Mathematica Sinica, 8, 521-525.
[14]  Inoue, A. (2024) Another Approach to Weakly Hyperbolic Equations of Chi and Ivrii Types by Introducing Grassmann Variables, in Preparation.
[15]  Witten, E. (1982) Supersymmetry and Morse Theory. Journal of Differential Geometry, 17, 661-692.
https://doi.org/10.4310/jdg/1214437492
[16]  Getzler, E. (1983) Pseudodifferential Operators on Supermanifolds and the Atiyah-Singer Index Theorem. Communications in Mathematical Physics, 92, 163-178.
https://doi.org/10.1007/bf01210843
[17]  Efetov, K.B. (1983) Supersymmetry and Theory of Disordered Metals. Advances in Physics, 32, 53-127.
https://doi.org/10.1080/00018738300101531
[18]  Efetov, K.B. (2005) Random Matrices and Supersymmetry in Disordered Systems. arXiv: comd-math/0502322v1.
[19]  Foiąs, C. (1973) Statistical Study of Navier-Stokes Equations I, II. Rendiconti del Seminario Matematico della Università di Padova, 9-123, 219-349.
[20]  Inoue, A. (2024) A Parametrix of FIO Type for the Schrödinger Equation with Quartic Potentials, in Preparation.
[21]  Bender, C.M. and Wu, T.T. (1969) Anharmonic Oscillator. Physical Review, 184, 1231-1260.
https://doi.org/10.1103/physrev.184.1231
[22]  Caliceti, E., Graffi, S. and Maioli, M. (1980) Perturbation Theory of Odd Anharmonic Oscillators. Communications in Mathematical Physics, 75, 51-66.
https://doi.org/10.1007/bf01962591
[23]  Caliceti, E. (1999) Distributional Borel Summability of Odd Anharmonic Oscillators. arXiv: math-ph/9910001v1.
https://arxiv.org/pdf/math-ph/9910001.pdf
[24]  Itzykson, C. and Zuber, J.B. (1979) Quantum Field Theory. MaGraw-Hill.
[25]  Feynman, R. and Hibbs, A.R. (1965) Quantum Mechanics and Path Integrals. McGraw-Hill.
[26]  Albeverio, S. and Hoegh-Krohn, R.J. (1976) Mathematical Theory of Feynman Path Integrals. Springer.
[27]  Reed, M. and Simon, B. (1972) Methods of Modern Mathematical Physics I: Functional Analysis. Academic Press.
[28]  Fujiwara, D. (1979) A Construction of the Fundamental Solution for the Schrödinger Equation. Journal dAnalyse Mathématique, 35, 41-96.
https://doi.org/10.1007/bf02791062
[29]  Schwartz, L. (1966) Théorie des distributions. Hermann.
[30]  Fujiwara, D. (1980) Remarks on Convergence of the Feynman Path Integrals. Duke Mathematical Journal, 47, 559-600.
https://doi.org/10.1215/s0012-7094-80-04734-1
[31]  Maslov, P. (1972), Théorie des perturbations et méthode asymptotique. Dunod.
[32]  Kitada, H. and Kumano-go, H. (1981) A Family of Fourier Integral Operators and the Fundamental Solution for a Schrödinger Equation. Osaka Journal of Mathematics, 18, 291-360.
[33]  Kumano-go, H. (1976) A Caculus of Fourier Integral Operators on Rn and the Fundamental Solution for an Operator of Hyperbolic Type. Communications in Partial Differential Equations, 1, 1-44.
https://doi.org/10.1080/03605307608820002
[34]  Kumano-go, H., Taniguchi, K. and Tozaki, Y. (1978) Multi—Products of Phase Functions for Fourier Integral Opertaors with an Application. Communications in Partial Differential Equations, 3, 349-380.
https://doi.org/10.1080/03605307808820069
[35]  Simon, B. (1979) Functional Integration and Quantum Physics. Academic Press.
[36]  Inoue, A. and Maeda, Y. (1985) On Integral Transformations Associated with a Certain Lagrangian—As a Prototype of Quantization. Journal of the Mathematical Society of Japan, 37, 219-244.
https://doi.org/10.2969/jmsj/03720219
[37]  Takahashi, Y. and Watanabe, S. (1981) The Probability Functionals (Onsager-Machlup Functions) of Diffusion Processes. In: Williams, D., Ed., Stochastic Integrals, Springer, 433-463.
https://doi.org/10.1007/bfb0088735
[38]  Fujita, T. and Kotani, S. (1982) The Onsager-Machlup Function for Diffusion Processes. Kyoto Journal of Mathematics, 22, 115-130.
https://doi.org/10.1215/kjm/1250521863
[39]  Fukushima, S. (2021) Time-Slicing Approximation of Feynman Path Integrals on Compact Manifolds. Annales Henri Poincaré, 22, 3871-3914.
https://doi.org/10.1007/s00023-021-01079-4
[40]  DeWitt, B.S. (1957) Dynamical Theory in Curved Spaces. I. A Review of the Classical and Quantum Action Principles. Reviews of Modern Physics, 29, 377-397.
https://doi.org/10.1103/revmodphys.29.377
[41]  Bastianelli, F., Corradini, O. and Vassura, E. (2017) Quantum Mechanical Path Integrals in Curved Spaces and the Type-A Trace Anomaly. Journal of High Energy Physics, 2017, Article No. 50.
https://doi.org/10.1007/jhep04(2017)050
[42]  Field, J.H. (2006) Quantum Mechanics in Space–time: The Feynman Path Amplitude Description of Physical Optics, De Broglie Matter Waves and Quark and Neutrino Flavour Oscillations. Annals of Physics, 321, 627-707.
https://doi.org/10.1016/j.aop.2005.09.002
[43]  Field, J.H. (2012) Derivation of the Schrödinger Equation from the Hamilton-Jacobi Equation in Feynman’s Path Integral Formulation of Quantum Mechanics. arXiv: 1204.0653v1.
[44]  Widom, H. (1980) A Complete Symbolic Calculus for Pseudodifferential Operators. Bulletin des Sciences Mathématiques, 104, 19-63.
[45]  Inoue, A. (1998) On a Construction of the Fundamental Solution for the Free Weyl Equation by Hamiltonian Path-Integral Method—An Exactly Solvable Case with “Odd Variable Coefficients”. Tohoku Mathematical Journal, 50, 91-118.
https://doi.org/10.2748/tmj/1178225016
[46]  Inoue, A. (1998) On a Construction of the Fundamental Solution for the Free Dirac Equation by Hamiltonian Path-Integral Method—The Classical Counterpart of Zitterbewegung. Japanese Journal of Mathematics. New Series, 24, 297-334.
https://doi.org/10.4099/math1924.24.297
[47]  Inoue, A. (2000) A Partial Solution for Feynman’s Problem—A New Derivation of the Weyl Equation. Mathematical Physics and Quantum Field Theory, 4, 121-145.
[48]  Manin, Y.I. (1985) New Dimensions in Geometry. In: Hirzebruch, F., Schwermer, J. and Suter, S., Eds., Arbeitstagung Bonn 1984, Springer, 59-101.
https://doi.org/10.1007/bfb0084585
[49]  Berezin, F.A. and Marinov, M.S. (1977) Particle Spin Dynamics as the Grassmann Variant of Classical Mechanics. Annals of Physics, 104, 336-362.
https://doi.org/10.1016/0003-4916(77)90335-9
[50]  Brézin, E. (1985) Grassmann Variables and Supersymmetry in the Theory of Disordered Systems. In: Garrido, L., Ed., Applications of Field Theory to Statistical Mechanics, Springer, 115-123.
https://doi.org/10.1007/3-540-13911-7_78
[51]  Fyodorov, Y.V. (1995) Basic Features of Efetov’s Supersymmetry Approach. In: Akkermans, E., Montambaux, G., Picard, J.L. and Zinn-Justin, J., Eds., Mesoscopic Quantum Physics, Elsevier.
[52]  Martin, J.L. (1951) Generalized Classical Dynamics, and the ‘Classical Analogue’ of a Fermi Oscillator. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 251, 536-542.
https://doi.org/10.1098/rspa.1959.0126
[53]  Martin, J.L. (1951) The Feynman Principle for a Fermi System. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 251, 543-549.
[54]  Campoamor-Stursberg, R., Rausch de Traubenberg, M. and Dobrev, V. (2010) Parafermions, Ternary Algebras and Their Associated Superspace. AIP Conference Proceedings, 1243, 213-222.
https://doi.org/10.1063/1.3460167
[55]  Kato, T. (1967) On Classical Solutions of the Two-Dimensional Non-Stationary Euler Equation. Archive for Rational Mechanics and Analysis, 25, 188-200.
https://doi.org/10.1007/bf00251588
[56]  Vladimirov, V.S. and Volovich, I.V. (1984) Superanalysis I. Differential Calculus. Theoretical and Mathematical Physics, 59, 317-335.
https://doi.org/10.1007/bf01028510
[57]  Vladimirov, V.S. and Volovich, I.V. (1984) Superanalysis. II. Integral Calculus. Theoretical and Mathematical Physics, 60, 743-765.
https://doi.org/10.1007/bf01018974
[58]  Ivrii, V.Y. (1977) Cauchy Problem Conditions for Hyperbolic Operators with Characteristics of Variable Multiplicity for Gevrey Classes. Siberian Mathematical Journal, 17, 921-931.
https://doi.org/10.1007/bf00968018
[59]  Inoue, A. and Nomura, Y. (2000) Some Refinements of Wigner’s Semi-Circle Law for Gaussian Random Matrices Using Superanalysis. Asymptotic Analysis, 23, 329-375.
[60]  Inoue, A. (1986) Some Examples Exhibiting the Procedures of Renormalization and Gauge Fixing. Schwinger-Dyson Equations of First Order. Kodai Mathematical Journal, 9, 134-160.
https://doi.org/10.2996/kmj/1138037156
[61]  Gelfand, I.M. and Shilov, G.E. (1964) Generalized Functions, Vol 1: Properties and Operations. Academic Press.
[62]  Aghili, F. and Tafazoli, S. (2018) Analytical Solution to Improper Integral of Diver-gent Power Functions Using the Riemann Zeta Function. arXiv: 1805.10480.
https://arxiv.org/pdf/1805.10480.pdf
[63]  Arai, A. (1981) On a Model of a Harmonic Oscillator Coupled to a Quantized, Massless, Scalar Field. I. Journal of Mathematical Physics, 22, 2539-2548.
https://doi.org/10.1063/1.524830
[64]  Aichelburg, P.C. and Grosse, H. (1977) Exactly Soluble System of Relativistic Two-Body Interaction. Physical Review D, 16, 1900-1911.
https://doi.org/10.1103/physrevd.16.1900
[65]  Ozawa, S. (1990) Fluctuation of Spectra in Random Media II. Osaka Journal of Mathematics, 27, 17-66.
[66]  Gsponer, A. (2006) A Concise Introduction to Colombeau Generalized Functions and Their Applications in Classical Electrodynamics. arXiv: math-ph/0611069.
https://doi.org/10.48550/arXiv.math-ph/0611069
[67]  Inoue, A. (1987) Strong and Classical Solutions of the Hopf Equation—An Example of Functional Derivative Equation of Second Order. Tohoku Mathematical Journal, 39, 115-144.
https://doi.org/10.2748/tmj/1178228375
[68]  Lai, N. and Zhou, Y. (2014) An Elementary Proof of Strauss Conjecture. Journal of Functional Analysis, 267, 1364-1381.
https://doi.org/10.1016/j.jfa.2014.05.020
[69]  Liu, M. and Wang, C. (2022) Blow-up for Semilinear Wave Equations on Kerr Black Hole Backgrounds. arXiv: 2212.14302.
https://doi.org/10.48550/arXiv.2212.14302
[70]  Graffi, S., Grecchi, V. and Simon, B. (1970) Borel Summability: Application to the Anharmonic Oscillator. Physics Letters B, 32, 631-634.
https://doi.org/10.1016/0370-2693(70)90564-2
[71]  Dowling, J.P. (1989) The Mathematics of the Casimir Effect. Mathematics Magazine, 62, 324-331.
https://doi.org/10.1080/0025570x.1989.11977464
[72]  Gross, L. (1966) The Cauchy Problem for the Coupled Maxwell and Dirac Equations. Communications on Pure and Applied Mathematics, 19, 1-15.
https://doi.org/10.1002/cpa.3160190102
[73]  Chadam, J.M. (1972) On the Cauchy Problem for the Coupled Maxwell-Dirac Equations. Journal of Mathematical Physics, 13, 597-604.
https://doi.org/10.1063/1.1666021
[74]  Flato, M., Simon, J. and Taflin, E. (1987) On Global Solutions of the Maxwell-Dirac Equations. Communications in Mathematical Physics, 112, 21-49.
https://doi.org/10.1007/bf01217678
[75]  Bournaveas, N. (1996) Local Existence for the Maxwell-Dirac Equations in Three Space Dimensions. Communications in Partial Differential Equations, 21, 693-720.
https://doi.org/10.1080/03605309608821204
[76]  Selberg, S. and Tesfahun, A. (2021) Ill-posedness of the Maxwell-Dirac System Below Charge in Space Dimension Three and Lower. Nonlinear Differential Equations and Applications NoDEA, 28, Article No. 42.
https://doi.org/10.1007/s00030-021-00703-w
[77]  Psarelli, M. (2005) Maxwell-Dirac Equations in Four-Dimensional Minkowski Space. Communications in Partial Differential Equations, 30, 97-119.
https://doi.org/10.1081/pde-200044472
[78]  Sakajo, T. (2023) Singular Solutions of Nonlinear Hydrodynamic Equations Arising in Turbulence Theory. Sugaku Expositions, 36, 93-117.
https://doi.org/10.1090/suga/478
[79]  Das, A. (1996) An Ongoing Big Bang Model in the Special Relativistic Maxwell-Dirac Equations. Journal of Mathematical Physics, 37, 2253-2259.
https://doi.org/10.1063/1.531507
[80]  De Lellis, C. and Székelyhidi Jr., L. (2014) Dissipative Euler Flows and Onsager’s Conjecture. Journal of the European Mathematical Society, 16, 1467-1505.
https://doi.org/10.4171/jems/466
[81]  De Lellis, C. and Székelyhidi, L. (2015) The h-Principle and Onsager’s Conjecture. Eur. Math. Soc. Newsl., 95, 19-24.
[82]  Isett, P. and Oh, S. (2015) A Heat Flow Approach to Onsager’s Conjecture for the Euler Equations on Manifolds. Transactions of the American Mathematical Society, 368, 6519-6537.
https://doi.org/10.1090/tran/6549
[83]  Buckmaster, T. and Vicol, V. (2019) Nonuniqueness of Weak Solutions to the Navier-Stokes Equation. Annals of Mathematics, 189, 101-144.
https://doi.org/10.4007/annals.2019.189.1.3
[84]  Scheffer, V. (1993) An Inviscid Flow with Compact Support in Space-Time. Journal of Geometric Analysis, 3, 343-401.
https://doi.org/10.1007/bf02921318
[85]  Shnirelman, A. (1996) On the Non-Uniqueness of Weak Solution of the Euler Equations. Journées équations aux dérivées partielles, 1-10.
https://doi.org/10.5802/jedp.511
[86]  Shnirelman, A. (1997) On the Nonuniqueness of Weak Solution of the Euler Equation. Communications on Pure and Applied Mathematics, 50, 1261-1286.
https://doi.org/10.1002/(sici)1097-0312(199712)50:12<1261::aid-cpa3>3.3.co;2-4
[87]  Shnirelman, A. (2000) Weak Solutions with Decreasing Energy of Incompressible Euler Equations. Communications in Mathematical Physics, 210, 541-603.
https://doi.org/10.1007/s002200050791
[88]  Buckmaster, T., De Lellis, C. and Székelyhidi, L. (2015) Dissipative Euler Flows with Onsager-Critical Spatial Regularity. Communications on Pure and Applied Mathematics, 69, 1613-1670.
https://doi.org/10.1002/cpa.21586
[89]  Yu, C. (2018) The Energy Equality for the Navier-Stokes Equations in Bounded do-Mains. arXiv: 1802.07661v1.
[90]  Hörmander, L. (1963) Linear Partial Differential Operators. Springer Verlag.
https://doi.org/10.1007/978-3-642-46175-0

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133