|
基于CRISPR-Cas生物传感系统的食源性病原微生物检测研究进展
|
Abstract:
食源性病原微生物是涉及食品安全的重要因素,传统检测方法中存在诸多局限性问题,如预处理复杂、周转时间长、灵敏度低、依赖大型仪器设备等。新发现的CRISPR (clustered regularly interspaced short palindromic repeats)技术在现阶段微生物检测领域出现许多新的研究进展。利用现代生物学方法基于CRISPR-Cas生物传感系统的开发,可以解决传统检测方式中的诸多问题。文章综述了依托三类Cas蛋白(Cas9、Cas12、Cas13)构建的生物传感器,并将这些生物传感器应用于食源性病原微生物的检测。这些基于CRISPR-Cas系统的传感技术有效克服了传统检测方法存在的限制,具有特异性强、灵敏度高、检测成本低的特点。文章还概述了该技术在目前研究和应用阶段遇到的问题,并对CRISPR-Cas生物传感器未来的发展方向进行了前瞻,同时提出了新的观点和可能的应用,以进一步探寻其在微生物检测领域的未来潜力。随着CRISPR-Cas系统的发展与完善,其必将在食源性微生物检测方面得到越发广泛的应用。
Foodborne pathogenic microorganisms are important factors related to food safety, and traditional detection methods have many limitations. The newly discovered clustered regularly interspaced short palindromic repeats (CRISPR) technology has made many new advances in microbial detection. The use of modern biological methods based on the development of CRISPR-Cas biosensor system can provide new ideas for traditional detection methods, and solve the problems of traditional detection methods, such as complex pretreatment and long turnaround time. This article mainly reviews studies on the detection of foodborne pathogenic microorganisms based on the biosensing system with three Cas proteins (Cas9, Cas12, Cas13), which has many advantages, such as high sensitivity, high specificity, low cost and so on, breaking the limitations faced by traditional foodborne pathogenic microorganisms detection. The challenges in the current development and application of this method are summarized, and the future development prospect of the new biosensor CRISPR-Cas system is prospected and new thinking is provided for future applications to explore its potential application in microbial detection. As the CRISPR-Cas system continues to evolve and enhance, its application in identifying foodborne microbes is expected to expand significantly.
[1] | 韩进兰. 食源性疾病监测中病原微生物检验结果分析[J]. 临床检验杂志(电子版), 2020, 9(1): 122. |
[2] | Etayash, H., Khan, M.F., Kaur, K. and Thundat, T. (2016) Microfluidic Cantilever Detects Bacteria and Measures Their Susceptibility to Antibiotics in Small Confined Volumes. Nature Communications, 7, Article No. 12947. https://doi.org/10.1038/ncomms12947 |
[3] | Hou, S., Wang, S., Zhao, X., Li, W., Gao, J., Wang, Y., et al. (2022) Establishment of Indirect ELISA Method for Salmonella Antibody Detection from Ducks Based on PagN Protein. BMC Veterinary Research, 18, Article No. 424. https://doi.org/10.1186/s12917-022-03519-7 |
[4] | 张鹏, 商晨, 王严. 恒温核酸扩增芯片法在呼吸道感染性病原菌检测中的应用[J]. 中国生物制品学杂志, 2022, 35(5): 590-593. |
[5] | 崔玉娟. 基因测序技术在食品安全检测中的应用[J]. 食品安全导刊, 2021(23): 173-174. |
[6] | Tachibana, H., Saito, M., Shibuya, S., Tsuji, K., Miyagawa, N., Yamanaka, K., et al. (2015) On-Chip Quantitative Detection of Pathogen Genes by Autonomous Microfluidic PCR Platform. Biosensors and Bioelectronics, 74, 725-730. https://doi.org/10.1016/j.bios.2015.07.009 |
[7] | Hidalgo-Cantabrana, C. and Barrangou, R. (2020) Characterization and Applications of Type I CRISPR-Cas Systems. Biochemical Society Transactions, 48, 15-23. https://doi.org/10.1042/bst20190119 |
[8] | Chylinski, K., Makarova, K.S., Charpentier, E. and Koonin, E.V. (2014) Classification and Evolution of Type II CRISPR-Cas Systems. Nucleic Acids Research, 42, 6091-6105. https://doi.org/10.1093/nar/gku241 |
[9] | 王想想, 杨荟. CRISPR-Cas9系统的基因编辑工具的应用和改进[J]. 生命的化学, 2019, 39(3): 430-437. |
[10] | Paul, B. and Montoya, G. (2020) CRISPR-Cas12a: Functional Overview and Applications. Biomedical Journal, 43, 8-17. https://doi.org/10.1016/j.bj.2019.10.005 |
[11] | Zhao, L., Qiu, M., Li, X., Yang, J. and Li, J. (2022) CRISPR-Cas13a System: A Novel Tool for Molecular Diagnostics. Frontiers in Microbiology, 13, Article 1060947. https://doi.org/10.3389/fmicb.2022.1060947 |
[12] | 杨兰, 杨洋, 李伟勋, Obaroakpo, J., 逄晓阳, 吕加平. 干酪乳杆菌CRISPR基因座分析[J]. 中国农业科学, 2019, 52(3): 521-529. |
[13] | 韩栋, 万金萍. 生物传感器及其在食品安全检测方面的应用[J]. 食品安全导刊, 2021(26): 147-148. |
[14] | Wang, H., Wu, Q., Zhou, M., Li, C., Yan, C., Huang, L., et al. (2022) Development of a CRISPR/Cas9-Integrated Lateral Flow Strip for Rapid and Accurate Detection of Salmonella. Food Control, 142, Article 109203. https://doi.org/10.1016/j.foodcont.2022.109203 |
[15] | Wang, X., Xiong, E., Tian, T., Cheng, M., Lin, W., Wang, H., et al. (2020) Clustered Regularly Interspaced Short Palindromic Repeats/Cas9-Mediated Lateral Flow Nucleic Acid Assay. ACS Nano, 14, 2497-2508. https://doi.org/10.1021/acsnano.0c00022 |
[16] | Sun, X., Wang, Y., Zhang, L., Liu, S., Zhang, M., Wang, J., et al. (2020) CRISPR-Cas9 Triggered Two-Step Isothermal Amplification Method for E. coli O157: H7 Detection Based on a Metal-Organic Framework Platform. Analytical Chemistry, 92, 3032-3041. https://doi.org/10.1021/acs.analchem.9b04162 |
[17] | Marsic, T., Ali, Z., Tehseen, M., Mahas, A., Hamdan, S. and Mahfouz, M. (2021) Vigilant: An Engineered Vird2-Cas9 Complex for Lateral Flow Assay-Based Detection of Sars-Cov2. Nano Letters, 21, 3596-3603. https://doi.org/10.1021/acs.nanolett.1c00612 |
[18] | Huang, M., Zhou, X., Wang, H. and Xing, D. (2018) Clustered Regularly Interspaced Short Palindromic Repeats/Cas9 Triggered Isothermal Amplification for Site-Specific Nucleic Acid Detection. Analytical Chemistry, 90, 2193-2200. https://doi.org/10.1021/acs.analchem.7b04542 |
[19] | Guk, K., Keem, J.O., Hwang, S.G., Kim, H., Kang, T., Lim, E., et al. (2017) A Facile, Rapid and Sensitive Detection of MRSA Using a CRISPR-Mediated DNA FISH Method, Antibody-Like dCas9/sgRNA Complex. Biosensors and Bioelectronics, 95, 67-71. https://doi.org/10.1016/j.bios.2017.04.016 |
[20] | Wang, H., Wu, Q., Yan, C., Xu, J., Qin, X., Wang, J., et al. (2022) CRISPR/Cas9 Bridged Recombinase Polymerase Amplification with Lateral Flow Biosensor Removing Potential Primer-Dimer Interference for Robust Staphylococcus Aureus Assay. Sensors and Actuators B: Chemical, 369, Article 132293. https://doi.org/10.1016/j.snb.2022.132293 |
[21] | Wang, L., Shen, X., Wang, T., Chen, P., Qi, N., Yin, B., et al. (2020) A Lateral Flow Strip Combined with Cas9 Nickase-Triggered Amplification Reaction for Dual Food-Borne Pathogen Detection. Biosensors and Bioelectronics, 165, Article 112364. https://doi.org/10.1016/j.bios.2020.112364 |
[22] | Mukama, O., Wu, J., Li, Z., Liang, Q., Yi, Z., Lu, X., et al. (2020) An Ultrasensitive and Specific Point-of-Care CRISPR/Cas12 Based Lateral Flow Biosensor for the Rapid Detection of Nucleic Acids. Biosensors and Bioelectronics, 159, Article 112143. https://doi.org/10.1016/j.bios.2020.112143 |
[23] | Wang, J.Y. and Doudna, J.A. (2023) CRISPR Technology: A Decade of Genome Editing Is Only the Beginning. Science, 379, eadd8643. https://doi.org/10.1126/science.add8643 |
[24] | Mao, Z., Chen, R., Wang, X., Zhou, Z., Peng, Y., Li, S., et al. (2022) CRISPR/Cas12a-Based Technology: A Powerful Tool for Biosensing in Food Safety. Trends in Food Science & Technology, 122, 211-222. https://doi.org/10.1016/j.tifs.2022.02.030 |
[25] | Tian, Y., Liu, T., Liu, C., Xu, Q., Fang, S., Wu, Y., et al. (2021) An Ultrasensitive and Contamination-Free On-Site Nucleic Acid Detection Platform for Listeria Monocytogenes Based on the CRISPR-Cas12a System Combined with Recombinase Polymerase Amplification. LWT—Food Science and Technology, 152, Article 112166. https://doi.org/10.1016/j.lwt.2021.112166 |
[26] | 赵淑军, 赵球平, 叶恒平, 杨感深, 李骏, 霍细香. 副溶血性弧菌引起的食物中毒调查及病原学研究[J]. 公共卫生与预防医学, 2020, 31(2): 113-117. |
[27] | 董换哲, 苑宁, 张蕴哲, 杨倩, 卢鑫, 郭威, 张伟. 跨越式滚环等温扩增技术结合CRISPR/Cas12a定量检测海产品中的副溶血性弧菌[J]. 食品科学, 2022, 43(14): 289-295. |
[28] | Wang, X., Zhong, M., Liu, Y., Ma, P., Dang, L., Meng, Q., et al. (2020) Rapid and Sensitive Detection of COVID-19 Using CRISPR/Cas12a-Based Detection with Naked Eye Readout, Crispr/as12a-ner. Science Bulletin, 65, 1436-1439. |
[29] | Xing, G.W., Shang, Y.T., Wang, X.R., et al. (2023) Multiplexed Detection of Foodborne Pathogens Using One-Pot CRISPR/Cas12a Combined with Recombinase Aided Amplification on a Finger-Actuated Microfluidic Biosensor. Biosensors and Bioelectronics, 220, Article 114885. |
[30] | 李林显. CRISPR-Cas12b的反式切割活性研究及其介导的核酸检测技术开发[D]: [硕士学位论文]. 开封: 河南大学, 2019. |
[31] | Huang, Y., Gu, D., Xue, H., Yu, J., Tang, Y., Huang, J., et al. (2021) Rapid and Accurate Campylobacter Jejuni Detection with CRISPR-Cas12b Based on Newly Identified Campylobacter Jejuni-Specific and Conserved Genomic Signatures. Frontiers in Microbiology, 12, Article 649010. https://doi.org/10.3389/fmicb.2021.649010 |
[32] | 黄钰. 基于CRISPR-Cas12b的空肠弯曲菌检测系统的建立及初步应用[D]: [硕士学位论文]. 扬州: 扬州大学, 2021. |
[33] | Sam, I.K., Chen, Y., Ma, J., Li, S., Ying, R., Li, L., et al. (2021) TB-QUICK: CRISPR-Cas12b-Assisted Rapid and Sensitive Detection of Mycobacterium Tuberculosis. Journal of Infection, 83, 54-60. https://doi.org/10.1016/j.jinf.2021.04.032 |
[34] | Qian, W.D., Huang, J., et al. (2021) CRISPR-Cas12a Combined with Reverse Transcription Recombinase Polymerase Amplification for Sensitive and Specific Detection of Human Norovirus Genotype GII.4. Virology, 564, 26-32. |
[35] | Qian, W., Huang, J., Wang, T., Fan, C., Kang, J., Zhang, Q., et al. (2022) Ultrasensitive and Visual Detection of Human Norovirus Genotype GII.4 or GII.17 Using Crispr-Cas12a Assay. Virology Journal, 19, Article No. 150. https://doi.org/10.1186/s12985-022-01878-z |
[36] | Qian, J., Huang, D., Ni, D., Zhao, J., Shi, Z., Fang, M., et al. (2022) A Portable CRISPR Cas12a Based Lateral Flow Platform for Sensitive Detection of Staphylococcus Aureus with Double Insurance. Food Control, 132, Article 108485. https://doi.org/10.1016/j.foodcont.2021.108485 |
[37] | Lin, L., Zha, G., Wei, H., Zheng, Y., Yang, P., Liu, Y., et al. (2023) Rapid Detection of Staphylococcus Aureus in Food Safety Using an Rpa-CRISPR-Cas12a Assay. Food Control, 145, Article 109505. https://doi.org/10.1016/j.foodcont.2022.109505 |
[38] | Huang, L.Q., Yuan, N., et al. (2023) An Electrochemical Biosensor for the Highly Sensitive Detection of Staphylococcus Aureus Based on SRCA-CRISPR/Cas12a. Talanta, 252, Article 123821. |
[39] | Shi, Y.Q., Kang, L., et al. (2022) CRISPR/Cas12a-Enhanced Loop-Mediated Isothermal Amplification for the Visual Detection of Shigella Flexneri. Frontiers in Bioengineering and Biotechnology, 10, Article 845688. |
[40] | Lv, X., Cao, W., Zhang, H., Zhang, Y., Shi, L. and Ye, L. (2022) CE-RAA-CRISPR Assay: A Rapid and Sensitive Method for Detecting Vibrio Parahaemolyticus in Seafood. Foods, 11, Article 1681. https://doi.org/10.3390/foods11121681 |
[41] | Wu, H., Chen, Y.J., et al. (2021) A Reversible Valve-Assisted Chip Coupling with Integrated Sample Treatment and CRISPR/Cas12a for Visual Detection of Vibrio Parahaemolyticus. Biosensors and Bioelectronics, 188, Article 113352. |
[42] | Zhang, M., Liu, C., Shi, Y., Wu, J., Wu, J. and Chen, H. (2020) Selective Endpoint Visualized Detection of Vibrio Parahaemolyticus with CRISPR/Cas12a Assisted PCR Using Thermal Cycler for On-Site Application. Talanta, 214, Article 120818. https://doi.org/10.1016/j.talanta.2020.120818 |
[43] | Yang, T., Chen, Y., He, J., Wu, J., Wang, M. and Zhong, X. (2023) A Designed Vessel Using Dissolvable Polyvinyl Alcohol Membrane as Automatic Valve to Couple LAMP with CRISPR/Cas12a System for Visual Detection. Biosensors, 13, Article 111. https://doi.org/10.3390/bios13010111 |
[44] | Wang, L., He, F., Chen, X., He, K., Bai, L., Wang, Q., et al. (2022) A CRISPR/Cas12a-Based Label-Free Fluorescent Method for Visual Signal Output. Sensors and Actuators B: Chemical, 370, Article 132368. https://doi.org/10.1016/j.snb.2022.132368 |
[45] | Chen, X., Wang, L., He, F., Chen, G., Bai, L., He, K., et al. (2021) Label-Free Colorimetric Method for Detection of vibrio Parahaemolyticus by Trimming the G-Quadruplex Dnazyme with CRISPR/Cas12a. Analytical Chemistry, 93, 14300-14306. https://doi.org/10.1021/acs.analchem.1c03468 |
[46] | Ma, L., Peng, L., Yin, L., Liu, G. and Man, S. (2021) CRISPR-Cas12a-Powered Dual-Mode Biosensor for Ultrasensitive and Cross-Validating Detection of Pathogenic Bacteria. ACS Sensors, 6, 2920-2927. https://doi.org/10.1021/acssensors.1c00686 |
[47] | Lee, S. and Oh, S. (2023) Lateral Flow Biosensor Based on Lamp-CRISPR/Cas12a for Sensitive and Visualized Detection of Salmonella Spp. Food Control, 145, Article 109494. https://doi.org/10.1016/j.foodcont.2022.109494 |
[48] | Liu, L., Zhao, G., Li, X., Xu, Z., Lei, H. and Shen, X. (2022) Development of Rapid and Easy Detection of Salmonella in Food Matrics Using RPA-CRISPR/Cas12a Method. LWT—Food Science and Technology, 162, Article 113443. https://doi.org/10.1016/j.lwt.2022.113443 |
[49] | Cai, Q., Shi, H., Sun, M., Ma, N., Wang, R., Yang, W., et al. (2022) Sensitive Detection of salmonella Based on CRISPR-Cas12a and the Tetrahedral DNA Nanostructure-Mediated Hyperbranched Hybridization Chain Reaction. Journal of Agricultural and Food Chemistry, 70, 16382-16389. https://doi.org/10.1021/acs.jafc.2c05831 |
[50] | Yin, L., Duan, N., Chen, S., Yao, Y., Liu, J. and Ma, L. (2021) Ultrasensitive Pathogenic Bacteria Detection by a Smartphone-Read G-Quadruplex-Based CRISPR-Cas12a Bioassay. Sensors and Actuators B: Chemical, 347, Article 130586. https://doi.org/10.1016/j.snb.2021.130586 |
[51] | Luo, Y., Shan, S., Wang, S., Li, J., Liu, D. and Lai, W. (2022) Accurate Detection of Salmonella Based on Microfluidic Chip to Avoid Aerosol Contamination. Foods, 11, Article 3887. https://doi.org/10.3390/foods11233887 |
[52] | Zheng, S., Yang, Q., Yang, H., Zhang, Y., Guo, W. and Zhang, W. (2023) An Ultrasensitive and Specific Ratiometric Electrochemical Biosensor Based on SRCA-CRISPR/Cas12a System for Detection of Salmonella in Food. Food Control, 146, Article 109528. https://doi.org/10.1016/j.foodcont.2022.109528 |
[53] | Zhang, H.G., Yang, S., et al. (2022) A Cascade Amplification Strategy for Ultrasensitive Salmonella Typhimurium Detection Based on DNA walker coupling with CRISPR-Cas12a. Journal of Colloid and Interface Science, 625, 257-263. |
[54] | Jiang, W., He, C., Bai, L., Chen, Y., Jia, J., Pan, A., et al. (2023) A Rapid and Visual Method for Nucleic Acid Detection of Escherichia coli O157: H7 Based on Crispr/Cas12a-PMNT. Foods, 12, Article 236. https://doi.org/10.3390/foods12020236 |
[55] | Abudayyeh, O.O., Gootenberg, J.S., Konermann, S., Joung, J., Slaymaker, I.M., Cox, D.B.T., et al. (2016) C2c2 Is a Single-Component Programmable RNA-Guided RNA-Targeting CRISPR Effector. Science, 353, aaf5573. https://doi.org/10.1126/science.aaf5573 |
[56] | Gootenberg, J.S., Abudayyeh, O.O., Lee, J.W., Essletzbichler, P., Dy, A.J., Joung, J., et al. (2017) Nucleic Acid Detection with CRISPR-Cas13a/C2c2. Science, 356, 438-442. https://doi.org/10.1126/science.aam9321 |
[57] | Myhrvold, C., Freije, C.A., Gootenberg, J.S., Abudayyeh, O.O., Metsky, H.C., Durbin, A.F., et al. (2018) Field-DeployAble Viral Diagnostics Using CRISPR-Cas13. Science, 360, 444-448. https://doi.org/10.1126/science.aas8836 |
[58] | Khan, H., Khan, A., Liu, Y., Wang, S., Bibi, S., Xu, H., et al. (2019) CRISPR-Cas13a Mediated Nanosystem for Attomolar Detection of Canine Parvovirus Type 2. Chinese Chemical Letters, 30, 2201-2204. https://doi.org/10.1016/j.cclet.2019.10.032 |
[59] | 苏璇, 葛以跃, 张倩, 朱小娟, 陈银, 吴涛, 乔乔, 赵康辰, 吴斌, 王祥喜, 庞正, 朱凤才, 崔仑标. CRISPR-Cas13a辅助RAA快速检测金黄色葡萄球菌的研究[J]. 中国病原生物学杂志, 2020, 15(3): 253-258. |
[60] | Zhou, J., Yin, L., Dong, Y., Peng, L., Liu, G., Man, S., et al. (2020) CRISPR-Cas13a Based Bacterial Detection Platform: Sensing Pathogen Staphylococcus Aureus in Food Samples. Analytica Chimica Acta, 1127, 225-233. https://doi.org/10.1016/j.aca.2020.06.041 |
[61] | 安柏霖, 苏璇, 郭悦, 王祥喜, 葛以跃, 朱凤才, 崔仑标. RAA联合CRISPR-Cas13a快速检测4种腹泻病原菌[J]. 中国食品卫生杂志, 2023, 35(3): 381-389. |
[62] | 叶维伟. Cas13b介导的CRISPR RNA成熟及识别的结构生物学研究[D]: [硕士学位论文]. 福州: 福建师范大学, 2019. |
[63] | Mahas, A., Wang, Q., Marsic, T. and Mahfouz, M.M. (2021) A Novel Miniature CRISPR-Cas13 System for Sars-Cov-2 Diagnostics. ACS Synthetic Biology, 10, 2541-2551. https://doi.org/10.1021/acssynbio.1c00181 |
[64] | Duan, L., Yang, X., Zhan, W., Tang, Y., Wei, M., Chen, K., et al. (2022) Development of a Rapid and Accurate CRISPR/Cas13-Based Diagnostic Test for GII.4 Norovirus Infection. Frontiers in Microbiology, 13, Article 912315. https://doi.org/10.3389/fmicb.2022.912315 |
[65] | Gao, S., Liu, J., Li, Z., Ma, Y. and Wang, J. (2021) Sensitive Detection of Foodborne Pathogens Based on CRISPR-Cas13a. Journal of Food Science, 86, 2615-2625. https://doi.org/10.1111/1750-3841.15745 |
[66] | An, B.L., Zhang, H.B., et al. (2021) Rapid and Sensitive Detection of Salmonella spp. Using CRISPR-Cas13a Combined with Recombinase Polymerase Amplification. Frontiers in Microbiology, 12, Article 732426. |
[67] | Shen, J., Zhou, X., Shan, Y., Yue, H., Huang, R., Hu, J., et al. (2020) Sensitive Detection of a Bacterial Pathogen Using Allosteric Probe-Initiated Catalysis and CRISPR-Cas13a Amplification Reaction. Nature Communications, 11, Article No. 267. https://doi.org/10.1038/s41467-019-14135-9 |
[68] | Liu, R., Ali, S., Huang, D., Zhang, Y., Lü, P. and Chen, Q. (2022) A Sensitive Nucleic Acid Detection Platform for Foodborne Pathogens Based on CRISPR-Cas13a System Combined with Polymerase Chain Reaction. Food Analytical Methods, 16, 356-366. https://doi.org/10.1007/s12161-022-02419-8 |
[69] | Zhang, T., Zhou, W., Lin, X., Khan, M.R., Deng, S., Zhou, M., et al. (2021) Light-Up RNA Aptamer Signaling-CRISPR-Cas13a-Based Mix-and-Read Assays for Profiling Viable Pathogenic Bacteria. Biosensors and Bioelectronics, 176, Article 112906. https://doi.org/10.1016/j.bios.2020.112906 |
[70] | Wei, J., Lu, N., Li, Z., Wu, X., Jiang, T., Xu, L., et al. (2019) The Mycobacterium Tuberculosis CRISPR-Associated Cas1 Involves Persistence and Tolerance to Anti-Tubercular Drugs. BioMed Research International, 2019, 1-9. https://doi.org/10.1155/2019/7861695 |
[71] | 张庆勋, 钟震宇, 郭青云, 何宏轩, 白加德. 基于CRISPR-Cas系统的病原体检测研究进展[J]. 中国畜牧兽医, 2022, 49(8): 3190-3199. |