|
“双碳”目标约束下的辽宁省房地产业碳排放测算及减排政策研究
|
Abstract:
文章对辽宁省房地产业2012年到2021年碳排放进行研究,首先运用排放因子法对辽宁省房地产业碳排放量进行测算,其次建立STIRPAT模型,选择岭回归的方法对各变量对辽宁省房地产业碳排放的影响进行定量分析,最后定量评价了不同针对性的减排政策。研究结果表明:辽宁省城镇化率、居民人均消费水平、第三产业增加值、产业结构对房地产业碳排放的影响为负向;辽宁省房地产业能源强度、辽宁省房地产业碳排放强度的影响为正向。结论表明,在辽宁省城镇化进程中,政府加强对房地产的调控及房地产业的产业结构进行升级,提高技术能力,选择能源类型并对能源进行合理利用,并且对居民宣传低碳节能的消费观念,对推进辽宁省房地产业碳减排具有重要意义。
The article studies the carbon emissions of the real estate industry in Liaoning Province from 2012 to 2021. Firstly, the emission factor method is used to calculate the carbon emissions of the real estate industry in Liaoning Province. Secondly, the STIRPAT model is established, and the ridge regression method is selected to quantitatively analyze the impact of various variables on the carbon emissions of the real estate industry in Liaoning Province. Finally, different targeted emission reduction policies are quantitatively evaluated. The research results indicate that the urbanization rate, per capita consumption level of residents, added value of the tertiary industry, and industrial structure in Liaoning Province have a negative impact on carbon emissions from the real estate industry; the energy intensity of the real estate industry in Liaoning Province and the carbon emission intensity of the real estate industry in Liaoning Province have a positive impact. The conclusion indicates that in the process of urbanization in Liaoning Province, the government has strengthened its regulation of real estate and upgraded the industrial structure of the real estate industry, improved technological capabilities, selected energy types and utilized energy reasonably, and promoted low-carbon and energy-saving consumption concepts to residents. This is of great significance for promoting carbon reduction in the real estate industry in Liaoning Province.
[1] | 章轲. 二十大报告: 推进美丽中国建设协同推进降碳、减污、扩绿、增长[EB/OL]. 第一财经日报. https://m.yicai.com/news/101563345.html, 2022-10-17. |
[2] | 王霞, 任宏, 蔡伟光, 等. 中国建筑能耗时间序列变化趋势及其影响因素[J]. 暖通空调, 2017, 47(11): 21-26+93. |
[3] | 申立银, 朱梦成, 吴雅, 等. 中国居住建筑碳排放效率测度[J]. 城市问题, 2019(10): 53-62. |
[4] | 张时聪, 王珂, 徐伟. 低碳、近零碳、零碳公共建筑碳排放控制指标研究[J]. 建筑科学, 2023, 39(2): 1-10+35. |
[5] | 王静. 基于全生命周期理论的低碳房地产测度研究[J]. 商业时代, 2011(28): 115-116. |
[6] | 孙慧宗, 李久明. 中国城市化与二氧化碳排放量的协整分析[J]. 人口学刊, 2010(5): 32-38. |
[7] | 程开明. 城市化与能源消耗: 一个文献综述[J]. 财贸研究, 2016, 27(1): 36-44. |
[8] | 李治国, 王杰. 中国城乡家庭碳排放核算及驱动因素分析[J]. 统计与决策, 2021, 37(20): 48-52. |
[9] | 胡振, 龚薛, 刘华. 家庭消费碳排放影响因素及其变化趋势分析——以陕西省为例[J]. 生态经济, 2020, 36(5): 24-30. |
[10] | 徐成龙, 任建兰, 巩灿娟. 产业结构调整对山东省碳排放的影响[J]. 自然资源学报, 2014, 29(2): 201-210. |
[11] | 陶长琪, 彭永樟, 琚泽霞. 经济增长、产业结构与碳排放关系的实证分析: 基于PVAR模型[J]. 经济经纬, 2015, 32(4): 126-131. |
[12] | 曲英, 雷震, 刘越. 辽宁省行业隐含碳排放及碳减排潜力分析——基于产业结构分析视角[J]. 科技管理研究, 2017, 37(24): 241-247. |
[13] | 张冬良, 宫清华, 尹小玲, 等. 低碳经济背景下广州市产业碳排放特征及发展对策[J]. 生态经济, 2015, 31(1): 65-69+79. |
[14] | Ehrlich, P.R. and Holdren, J.P. (1971) Impact of Population Growth. Science, 171, 1212-1217. https://doi.org/10.1126/science.171.3977.1212 |
[15] | Waggoner, P.E. and Ausubel, J.H. (2002) A Framework for Sustainability Science: A Renovated IPAT Identity. Proceedings of the National Academy of Sciences, 99, 7860-7865. https://doi.org/10.1073/pnas.122235999 |
[16] | Schulze, P.C. (2002) I = PBAT. Ecological Economics, 40, 149-150. https://doi.org/10.1016/s0921-8009(01)00249-x |