全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Physical and Chemical Characterizations of Rubber Latex Cup Bottom Oil

DOI: 10.4236/abb.2024.159032, PP. 511-521

Keywords: Rubber Latex Cup Bottoms Oil, Density, Viscosity, Characterizations

Full-Text   Cite this paper   Add to My Lib

Abstract:

Rubber latex is an important economic resource. However, the residues from its harvesting are thrown away, even though they contain lipids that can be recycled. This recovery of the residues from the bottom of the cup requires first and foremost their characterization. The aim of this study is therefore to determine the main physical and chemical characteristics of rubber latex cup bottom oil. Oil’s physical parameters determination shows that it has a density of 951 kg?m3, a kinematic viscosity of 48.57 cSt and a water content of 0.0845%. Chemical parameters, meanwhile, indicate that this cup bottom residue has a fat content of 95.96%, an acid number of 2.805 mg KOH/g and an iodine number of 92.42 g I2/100g. Therefore, rubber latex cup bottom oil can be used in the formulation of biofuels, biolubricants, paints, varnishes, alkyd resins, polishing oils, soaps, and insecticides.

References

[1]  Caliskan, H. (2017) Environmental and Enviroeconomic Researches on Diesel Engines with Diesel and Biodiesel Fuels. Journal of Cleaner Production, 154, 125-129.
https://doi.org/10.1016/j.jclepro.2017.03.168
[2]  Gupta, A.R. and Rathod, V.K. (2018) Waste Cooking Oil and Waste Chicken Eggshells Derived Solid Base Catalyst for the Biodiesel Production: Optimization and Kinetics. Waste Management, 79, 169-178.
https://doi.org/10.1016/j.wasman.2018.07.022
[3]  Ahmad, N., Ahmad, N., Ahmed, U., Abdul Jameel, A.G., Amjad, U., Hussain, M., et al. (2023) Production of Fuel Oil from Elastomer Rubber Waste via Methanothermal Liquefaction. Fuel, 338, Article 127330.
https://doi.org/10.1016/j.fuel.2022.127330
[4]  Rahman, W.U., Khan, A.M., Anwer, A.H., Hasan, U., Karmakar, B. and Halder, G. (2022) Parametric Optimization of Calcined and Zn-Doped Waste Egg-Shell Catalyzed Biodiesel Synthesis from Hevea Brasiliensis Oil. Energy Nexus, 6, Article 100073.
https://doi.org/10.1016/j.nexus.2022.100073
[5]  Nogueira, L.A.H., Souza, G.M., Cortez, L.A.B. and Brito Cruz, C.H.d. (2020) Bio fuels for Transport. In: Letcher, T.M., Ed., Future Energy, Elsevier, 173-197.
https://doi.org/10.1016/b978-0-08-102886-5.00009-8
[6]  Esteban, B., Baquero, G., Puig, R., Riba, J. and Rius, A. (2011) Is It Environmentally Advantageous to Use Vegetable Oil Directly as Biofuel Instead of Converting It to Biodiesel? Biomass and Bioenergy, 35, 1317-1328.
https://doi.org/10.1016/j.biombioe.2010.12.025
[7]  Altın, R., Çetinkaya, S. and Yücesu, H.S. (2001) The Potential of Using Vegetable Oil Fuels as Fuel for Diesel Engines. Energy Conversion and Management, 42, 529-538.
https://doi.org/10.1016/s0196-8904(00)00080-7
[8]  de Almeida, S. (2002) Performance of a Diesel Generator Fuelled with Palm Oil. Fuel, 81, 2097-2102.
https://doi.org/10.1016/s0016-2361(02)00155-2
[9]  Mittelbach, M. (1996) Diesel Fuel Derived from Vegetable Oils, VI: Specifications and Quality Control of Biodiesel. Bioresource Technology, 56, 7-11.
https://doi.org/10.1016/0960-8524(95)00172-7
[10]  Srivastava, A. and Prasad, R. (2000) Triglycerides-Based Diesel Fuels. Renewable and Sustainable Energy Reviews, 4, 111-133.
https://doi.org/10.1016/s1364-0321(99)00013-1
[11]  Vaitilingom, G. (2007) Extraction, Conditionnement et Utilisation des Huiles Végétales Pures Carburant. Conférence Internationale «Enjeux et Perspectives des Biocarburants pour l’Afrique», Ouagadougou, 27-29 November 2007, 154 p.
[12]  Agarwal, D. and Agarwal, A.K. (2007) Performance and Emissions Characteristics of Jatropha Oil (Preheated and Blends) in a Direct Injection Compression Ignition Engine. Applied Thermal Engineering, 27, 2314-2323.
https://doi.org/10.1016/j.applthermaleng.2007.01.009
[13]  Tangermann, S. (2007) Biocarburants et sécurité alimentaire. Économie rurale, 15, 100-104.
https://doi.org/10.4000/economierurale.2260
[14]  Danebe, K.A., Bruno, D., Beda, T. and Samon, J.B. (2019) Propriétés Physiques et Mécaniques des Graines et Amandes de Jatropha curcas L. European Scientific Journal, 15, 81-105.
https://doi.org/10.19044/esj.2019.v15n36p81
[15]  Moro, A.P., Adou, B.Y.C., Diarrassouba, M., Konan, D., Soumahin, E.F., Kouakou, T.H., et al. (2021) Quantitative Assessment of the Agro-Physiological Advantages of Upward Tapping in Relation to the Downward Tapping of the GT 1 and PB 260 Rubber Clones [Hevea brasiliensis, Muell. Arg. (Euphorbiaceae)] in Southwest Côte D’ivoire. Journal of Experimental Agriculture International, 43, 94-104.
https://doi.org/10.9734/jeai/2021/v43i230650
[16]  Dick, E., Traore, M., Elabo, A., Soumahin, E., Assi, E., Atsin, O., et al. (2014) Effets de différentes fréquences annuelles de stimulation éthylénique sur les paramètres agrophysiologiques et de sensibilité à l’encoche sèche d’Hevea brasiliensis au sud-est de la Côte d’Ivoire: Cas des clones PB 235 et PB 260 de la classe... International Journal of Biological and Chemical Sciences, 8, 956-974.
https://doi.org/10.4314/ijbcs.v8i3.12
[17]  Deon, M. (2012) Importance de la cassiicoline en tant qu’effecteur de la Corynespora Leaf Fall (CLF) chez l’hévéa: Développement d’outils pour le contrôle de la maladie. Ph.D. Thesis, Université Blaise Pascal.
[18]  Razar, R.M., Hamid, N.R.A. and Ghani, Z.A. (2021) GxE Effect and Stability Analyses of Selected Rubber Clones (Hevea brasiliensis) in Malaysia. Journal of Rubber Research, 24, 475-487.
https://doi.org/10.1007/s42464-021-00115-6
[19]  Ribeiro, S. (2019) Rôle de la Cassiicoline dans l’Interaction Compatible Hevea Brasiliensis/Corynespora Cassiicola: Vers la Sélection Assistée par Effecteur: Biologie Végétale. Ph.D. Thesis, Université Clermont Auvergne.
[20]  Pizzi, A., Duca, D., Rossini, G., Fabrizi, S. and Toscano, G. (2020) Biofuel, Bioenergy and Feed Valorization of By-Products and Residues from Hevea Brasiliensis Cultivation to Enhance Sustainability. Resources, 9, Article 114.
https://doi.org/10.3390/resources9090114
[21]  Kouadio, K.C., Offo, O.Q.A., Kouakou, C.H. and Emeruwa, E. (2020) Use of Alternative Binder: Influence of Latex Content on Physical and Mechanical Properties of Laterite Stabilized with Raw Rubber Latex. Geomaterials, 10, 56-65.
https://doi.org/10.4236/gm.2020.103004
[22]  Maliki, M., Ikhuoria, E.U. and Ifijen, I.H. (2020) Extraction and Physiochemical Characterization of Oils Obtained from Selected Under-Utilized Oil Bearing Seeds in Nigeria. ChemSearch Journal, 11, 110-117.
[23]  Dusotoit-Coucaud, A. (2009) Caractérisations Physiologique et Moléculaire des Transporteurs de Sucres et de Polyols des Cellules Laticifères chez “‘Hevea Brasiliensis’”, en Relation avec la Production de Latex. Ph.D. Thesis, Université d’Auvergne.
[24]  Deveaux, J. (2021) La Côte d’Ivoire devient le quatrième producteur mondial de latex Franceinfo.
[25]  Vaysse, L., Bonfils, F., Thaler, P. and Sainte-Beuve, J. (2009) Natural Rubber. In: Höfer, R., Ed., Sustainable Solutions for Modern Economies, The Royal Society of Chemistry, 339-367.
https://doi.org/10.1039/9781847552686-00339
[26]  NF EN ISO 6883 (2017) Corps gras d’origines animale et végétale—Détermination de la masse volumique conventionnelle (poids du litre dans l’air).
[27]  DIN 53015 (2019) Viscosimétrie—Mesurage de la viscosité à l’aide du viscosimètre à bille d’Höppler.
[28]  (2023) Standard Test Method for Cloud Point of Petroleum Products and Liquid Fuels. ASTM D 2500.
[29]  ISO (2016) Corps gras d’origines animale et végétale—Détermination de la teneur en eau et en matières volatiles. ISO 662.
[30]  ISO (2018) Corps gras d’origines animale et végétale—Détermination de l’indice d’iode. ISO 3961.
[31]  ISO (2017) Corps gras d’origines animale et végétale—Détermination de l’indice de peroxyde—Détermination avec point d’arrêt iodométrique. ISO 3960.
[32]  ISO (2020) Animal and Vegetable Fats and Oils—Determination of Acid Value and Acidity. ISO 660.
[33]  ISO (2020) Animal and Vegetable Fats and Oils—Determination of Saponification Value. ISO 3657.
[34]  Blin, J., Brunschwig, C., Chapuis, A., Changotade, O., Sidibe, S.S., Noumi, E.S., et al. (2013) Characteristics of Vegetable Oils for Use as Fuel in Stationary Diesel Engines—Towards Specifications for a Standard in West Africa. Renewable and Sustainable Energy Reviews, 22, 580-597.
https://doi.org/10.1016/j.rser.2013.02.018
[35]  Giakoumis, E.G. (2018) Analysis of 22 Vegetable Oils’ Physico-Chemical Properties and Fatty Acid Composition on a Statistical Basis, and Correlation with the Degree of Unsaturation. Renewable Energy, 126, 403-419.
https://doi.org/10.1016/j.renene.2018.03.057
[36]  Wititsuwannakul, R., Rukseree, K., Kanokwiroon, K. and Wititsuwannakul, D. (2008) A Rubber Particle Protein Specific for Hevea Latex Lectin Binding Involved in Latex Coagulation. Phytochemistry, 69, 1111-1118.
https://doi.org/10.1016/j.phytochem.2007.12.007
[37]  Torres-García, M., García-Martín, J.F., Jiménez-Espadafor Aguilar, F.J., Barbin, D.F. and Álvarez-Mateos, P. (2020) Vegetable Oils as Renewable Fuels for Power Plants Based on Low and Medium Speed Diesel Engines. Journal of the Energy Institute, 93, 953-961.
https://doi.org/10.1016/j.joei.2019.08.006
[38]  Rahman, M., Rasul, M., Hassan, N. and Hyde, J. (2016) Prospects of Biodiesel Production from Macadamia Oil as an Alternative Fuel for Diesel Engines. Energies, 9, Article 403.
https://doi.org/10.3390/en9060403
[39]  Islam, A.K.M.A., Primandari, S.R.P. and Yaakob, Z. (2018) Non-Edible Vegetable Oils as Renewable Resources for Biodiesel Production: South-East Asia Perspective. In: Nageswara-Rao, M. and Soneji, J.R., Eds., Advances in Biofuels and Bioenergy, InTech.
https://doi.org/10.5772/intechopen.73304
[40]  Mofijur, M., Rasul, M.G., Hassan, N.M.S., Masjuki, H.H., Kalam, M.A. and Mahmudul, H.M. (2017) Assessment of Physical, Chemical, and Tribological Properties of Different Biodiesel Fuels. In: Rasul, M.G., Azad, A,K, and Sharma, S.C., Eds., Clean Energy for Sustainable Development, Elsevier, 441-463.
https://doi.org/10.1016/b978-0-12-805423-9.00014-4
[41]  Blin, J., Mouras, S., Sidibe, S., Girard, P., Vaitilingom, G. and Pechine, B. (2014) Guide technique pour l’utilisation d’huile végétale carburant dans les moteurs stationnaires.
[42]  Esonye, C., Onukwuli, O.D. and Ofoefule, A.U. (2019) Characterization and Oxidation Modeling of Oils from Prunus Amygdalus, Dyacrodes Edulis and Chrysophyllum Albidium. Industrial Crops and Products, 128, 298-307.
https://doi.org/10.1016/j.indcrop.2018.11.029
[43]  Adebayo, S.E., Orhevba, B.A., Adeoye, P.A., Musa, J.J. and Fase, O.J. (2012) Solvent Extraction and Characterization of Oil from African Star Apple (Chrysophyllum albidum) Seeds. Academic Research International, 3, 178-183.
[44]  Atabani, A.E., Silitonga, A.S., Ong, H.C., Mahlia, T.M.I., Masjuki, H.H., Badruddin, I.A., et al. (2013) Non-Edible Vegetable Oils: A Critical Evaluation of Oil Extraction, Fatty Acid Compositions, Biodiesel Production, Characteristics, Engine Performance and Emissions Production. Renewable and Sustainable Energy Reviews, 18, 211-245.
https://doi.org/10.1016/j.rser.2012.10.013
[45]  Ahmad, M., Sultana, S., Keat Teong, L., Abdullah, A.Z., Sadia, H., Zafar, M., et al. (2014) Distaff Thistle Oil: A Possible New Non-Edible Feedstock for Bioenergy. International Journal of Green Energy, 12, 1066-1075.
https://doi.org/10.1080/15435075.2014.891220
[46]  Rousset, P. (2008) Guide technique pour une utilisation énergétique des huiles végétales. CIRAD, 292 p.
[47]  NF EN 14214 (2019) Liquid Petroleum Products—Fatty Acid Methyl Esters (FAME) for Use in Diesel Engines and Heating Applications—Requirements and Test Methods.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133