全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Environmental Assessment by Vulnerability Analysis of Water Intended for Human Consumption in Urban Environments: A Case Study of the N’djili River, Kinshasa

DOI: 10.4236/oalib.1112294, PP. 1-22

Keywords: Contamination, Protection Perimeters, Water Security Plan, WIHC, NPK

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background: The Water Distribution Administration of the Democratic Republic of Congo (REGIDESO) faces many challenges, particularly related to unregulated human activities on all watercourses used for the treatment of water intended for human consumption in general and in particular around the watershed of the N’djili River, a river that feeds the largest water treatment plant in the Democratic Republic of Congo (DRC). Aim: This contribution is based on the assessment of the vulnerability of the N’djili River to human activities around it in order to propose recommendations for a water safety health plan. Methods: An environmental study was conducted to identify the sources of pollution and their proximity to surface and groundwater. An analysis of water vulnerability was then carried out, followed by monitoring of this area using geographic information system and remote sensing tools. Results: During the environmental survey, we identified several sources of water contamination, mainly chemicals used in agricultural areas to increase the profitability of market gardening, domestic wastewater, industrial wastewater and fecal matter. The calculation of the water protection perimeters of the N’djili River and the boreholes observed in the study area shows a noncompliance with these perimeters. It was found that the immediate protection perimeter is occupied by activities likely to pollute the water; This is the case of the close protection perimeter where domestic and industrial activities; Agricultural activities; Commercial activities and road transport are the major sources of contamination. Water quality monitoring by NDWI and NDCI shows an average rate of dissolved solids in a high humidity area. Conclusion: To combat these problems, the DRC government, through the Ministries of Water Resources, Public Health, Environment and Urban Planning, must put in place a solid water safety plan, which will combat several consequences that these problems have for the health of the population.

References

[1]  Festy, B., Hartemann, P., Ledrans, M., Levallois, P., Payment, P. and Tricard, D. (2003) Qualité de l’eau. https://docplayer.fr/10453112-Bernard-festy-philippe-hartemann-mart ine-ledrans-patrick-levallois-pierre-payment-dominique-tricard.html
[2]  Mufun-gizi, I., Loola, R., Kabulo, J., Diakondua, R., Kawaya, H., Bongeli, R., Musitu, J., Kasongo, K. and Akilimali, A. (2024) Assessment of Interactions between Raw Water from the N’Djili River, Groundwater and Water Treated by the Water Distribution Administration in Kinshasa, Democratic Republic of Congo. Interna-tional Journal of Innovation and Applied Studies, 41, 946-956.
[3]  Mufungizi, I., Okon, I., Nkundakozera, M. and Akilimali, A. (2024) Supporting Health Systems and Environment in the Democratic Republic of Congo: A Call for Action. Health Science Reports, 7, e2257. https://doi.org/10.1002/hsr2.2257
[4]  Bwira, J.P.E. (2017) Analyse de vulnérabilité des eaux de la rivière N’djili. Master’s Thesis, Université Paul Sabatier-Toulouse III.
[5]  Léveque, B. (2020). Analyse des vulnérabilités des prises d’eau potable de la rivière des Mille Îles (Québec) aux étiages estivaux en contexte de changements globaux par une approche ascendante. Ph.D. Thesis, Polytechnique Montréal. https://publications.polymtl.ca/5253/
[6]  Urgelli, B. (2000) Modélisation des interactions Atmosphère-Hydrosphère-Lithosphère-Biosphère. Planet Terre. https://planet-terre.ens-lyon.fr/ressource/tp-interactions.xml
[7]  Fa-lasi, N.J.R. (2017) Pollution de la rivière N’djili et contraintes de gestion des sols autour du Pool Malebo (Cas du site agricole de Masina Rail1/Kinshasa). https://matheo.uliege.be/bitstream/2268.2/5571/5/TFE%20M S%20SGE%20FALASI%20NITU%20JOSEPH%202017-2018.pdf 
[8]  WHO (2023) Palu-dism. https://www.who.int/fr/news-room/fact-sheets/detail/malaria
[9]  WHO (2023) In Africa, the Number of New Cases of Cholera Is Increasing Rapidly and in One Month Reaches a Third of the Total Number of Cases Reported in 2022.
[10]  WHO (2023) Drinking Water. https://www.who.int/fr/news-room/fact-sheets/detail/drinking-water
[11]  Plummer, R., de Loë, R. and Armitage, D. (2012) A Systematic Review of Water Vulnerability Assessment Tools. Water Resources Management, 26, 4327-4346. https://doi.org/10.1007/s11269-012-0147-5
[12]  Aller, L., Bennett, T., Lehr, J.H., Petty, R. and Hacket, G. (1987) A Standardized System for Evaluating Ground Water Pollution Potential Using Hydrogeological Settings. US EPA Re-port EPA-600/2-87-035, Dublin (Ohio) et Ada (Oklahoma), états-Unis.
[13]  Chowdhury, S.H., Kehew, A.E. and Passero, R.N. (2003) Cor-relation between Nitrate Contamination and Ground Water Pollution Potential. Groundwater, 41, 735-745. https://doi.org/10.1111/j.1745-6584.2003.tb02415.x
[14]  Ross, M., Martel, R., Lefebvre, R., Parent, M. and Savard, M.M. (2004) Assessing Rock Aquifer Vulnerability Using Downward Advective Times from a 3D Model of Surficial Geology: A Case Study from the St. Lawrence Lowlands, Canada. Geofísica In-ternacional, 43, 591-602. https://doi.org/10.22201/igeof.00167169p.2004.43.4.828
[15]  Banton, O. and Bangoy, L.M. (1997) Hydrogéologie—Multiscience environnementale des eaux souterraines: Québec. Presses de l’Université du Québec.
[16]  Bolduc, S., Larocque, M. and Prichonnet, G. (2006) Vulnérabilité de l’eau souterraine à la contamination par les nitrates sur le bassin versant de la rivière Noire (Mon-térégie, Québec). Revue des sciences de l’eau, 19, 87-99. https://doi.org/10.7202/013043ar
[17]  Paradis, D. (2000) Comparaison des méthodes de détermination des périmètres de protection des ouvrages de cap-tage d’eau souterraine dans les aquifères granulaires du piémont Laurenti. https://espace.inrs.ca/id/eprint/327/1/Tg00007.pdf
[18]  Eclairage (2011) Protection des captages d’eau potable, préservation de la ressource en eau: Comment passer à l’action? Guide Pratique. https://www.pseau.org/outils/ouvrages/aesn_alterre_bourgogne_protection_des_captages_eau_potable_2011.pdf
[19]  Egoroff, A. (1955) Esquisse géologique provisoire du sous-sol de Léopoldville d’après les données de sondage. Service géologique du Congo-Ruanda-Urundi.
[20]  Mufungizi, I., Maba, C. and Awad-hifo, A. (2023) Comparative Analysis of Sands for Concrete Making: Case Study of River Sand, White Sand, and Crushed Sand in Kinshasa, DR Congo. https://doi.org/10.21203/rs.3.rs-3774268/v1
[21]  Mufungizi, I., Loola, R., Bongeli, R., Kabulo, J., Diakondua, R. and Kawaya, H. (2023) Contribution à l’étude Hydro-Climatique, Morphométrique et Hydrographique du Bassin Ver-sant de la N’djili (Sud-Ouest/R.D. Congo). International Journal of Scientific Re-search and Management (IJSRM), 11, 262-285. https://doi.org/10.18535/ijsrm/v11i10.fe01
[22]  Li, W., Du, Z., Ling, F., Zhou, D., Wang, H., Gui, Y., et al. (2013) A Comparison of Land Surface Water Map-ping Using the Normalized Difference Water Index from TM, ETM and Ali. Remote Sensing, 5, 5530-5549. https://doi.org/10.3390/rs5115530
[23]  Guo, Q., Pu, R., Li, J. and Cheng, J. (2017) A Weighted Normalized Difference Water Index for Water Extraction Using Landsat Imagery. International Journal of Re-mote Sensing, 38, 5430-5445. https://doi.org/10.1080/01431161.2017.1341667
[24]  Rad, A.M., Kreitler, J. and Sadegh, M. (2021) Augmented Normalized Difference Water Index for Improved Surface Water Monitoring. Environmental Modelling & Software, 140, Article ID: 105030. https://doi.org/10.1016/j.envsoft.2021.105030
[25]  Gao, B. (1996) NDWI—A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water from Space. Remote Sensing of Environment, 58, 257-266. https://doi.org/10.1016/s0034-4257(96)00067-3
[26]  Mishra, S. and Mishra, D.R. (2012) Normalized Difference Chlorophyll Index: A Novel Model for Remote Estimation of Chlorophyll-A Concentration in Turbid Produc-tive Waters. Remote Sensing of Environment, 117, 394-406. https://doi.org/10.1016/j.rse.2011.10.016
[27]  Nematchoua, M.K., Orosa, J.A. and Reiter, S. (2019) Climate Change: Variabilities, Vulnerabilities and Ad-aptation Analysis—A Case of Seven Cities Located in Seven Countries of Central Africa. Urban Climate, 29, Article ID: 100486. https://doi.org/10.1016/j.uclim.2019.100486
[28]  Sonkoué, D., Monkam, D., Fotso-Nguemo, T.C., Yepdo, Z.D. and Vondou, D.A. (2018) Evaluation and Pro-jected Changes in Daily Rainfall Characteristics over Central Africa Based on a Multi-Model Ensemble Mean of CMIP5 Simulations. Theoretical and Applied Cli-matology, 137, 2167-2186. https://doi.org/10.1007/s00704-018-2729-5
[29]  Mufwaya, C.K. and Mu-churu, S. (2016) Spatial and Temporal Characteristics of Rainfall in a Da-ta-Scarce Region: Case of Kinshasa and Bas-Congo in Democratic Republic of Congo. Hydrological Sciences Journal, 61, 2024-2032. https://doi.org/10.1080/02626667.2015.1080828
[30]  Ndehedehe, C.E., Awange, J.L., Agutu, N.O. and Okwuashi, O. (2018) Changes in Hy-dro-Meteorological Conditions over Tropical West Africa (1980-2015) and Links to Global Climate. Global and Planetary Change, 162, 321-341. https://doi.org/10.1016/j.gloplacha.2018.01.020
[31]  Testud, F. (2004) En-grais minéraux. EMC—Toxicologie-Pathologie, 1, 21-28. https://doi.org/10.1016/j.emctp.2003.10.002
[32]  Jadika, T., Kankolongo, M., Tshizembe, M., Bongali, B., Banga Banga, M., Kasongo, K., et al. (2018) L’influence des fertilisants organiques liquides D.I. GROW et inorganiques NPK 17-17-17 Urée sur le rendement et la rentabilité de la culture du maïs à Ngandajika. Journal of Applied Biosciences, 122, 12267-12273. https://doi.org/10.4314/jab.v122i1.6
[33]  WHO (2023) Model List of Essen-tial Medicines, 23rd List. https://www.who.int/publications/i/item/WHO-MHP-HPS-EML-2023.02
[34]  Tonon, D., Sikirou, R., Adomou, A.C., Zinsou, V., Zocli, B., N’djolosse, K., et al. (2018) Efficacité des fongicides Mancozèbe 80 WP et Chlorothalonil-Carbendazime 65 SC contre Colletotrichum gloeosporioides agent causal de l’anthracnose de l’anacardier au Bénin. International Journal of Biolog-ical and Chemical Sciences, 11, 2093-2105. https://doi.org/10.4314/ijbcs.v11i5.13
[35]  ICSC (2003) Manèbe. https://www.ilo.org/dyn/icsc/showcard.display?p_lang=fr&p_card_id=0173&p_version=2
[36]  INRS (2018) Mancozèbe, Fiche Toxicologique n°277. https://www.inrs.fr/publications/bdd/fichetox/fiche.html?refINRS=FICHETOX_277
[37]  Petitjean, K. (2022) évaluations des effets cytotoxiques et métaboliques des dithio-carbamates manèbe et mancozèbe dans des modèles in vitro de cellules hépatiques. Master’s Thesis, Université de Rennes.
[38]  WHO (2019) Who Recommended Hazard Classification of Pesticides and Guidelines for Classification. https://www.who.int/fr/publications-detail/9789240005662
[39]  Nwankwo, V., Uraku, A., Famurewa, A. and Uraku, O. (2018) Assessment of Nephrotoxicity and Histopathological Lesions of Albino Rats Exposure to Dd-Force and Baygon Insecticides. International Journal of Medical and Surgical Sciences, 4, 1251-1258. https://doi.org/10.32457/ijmss.2017.031
[40]  ICSC (2004) DDT. https://www.ilo.org/dyn/icsc/showcard.display?p_lang=fr&p_card_id=0034&p_version=2
[41]  BRGM Périmètres de Protection des Captages (PPC). https://sigessn.brgm.fr/spip.php?article82#:~:text=Le%20périmètre%20de%20protection%20immédiate,et%20au%20périmètre%20lui-même
[42]  Min-istère du Développement Durable, de l’Environnement et de la Lutte contre les changements climatiques (2015) Guide de réalisations des analyses de la vul-nérabilité des sources destinées à l’alimentation en eau potable au Québec, Di-rection des eaux municipales. https://www.environnement.gouv.qc.ca/eau/prelevements/guide-analyse-vulnerabilite-des-sources.pdf
[43]  Sara, V. (2014) Guide National de Détermina-tion des Périmètres de Protection des Captages d’Eau destinée à la Consomma-tion Humaine. https://www.geozentrum-hannover.de/EN/Themen/Wasser/Projekte/abgeschloss en/TZ/Burundi/techn_rep_guide_fr.pdf?__blob=publicationFile&v=1
[44]  McFeeters, S. (2013) Using the Normalized Difference Water Index (NDWI) within a Geographic Information System to Detect Swimming Pools for Mosquito Abatement: A Practical Approach. Remote Sensing, 5, 3544-3561. https://doi.org/10.3390/rs5073544
[45]  Jones, E.R., Bierkens, M.F.P., Wan-ders, N., Sutanudjaja, E.H., van Beek, L.P.H. and van Vliet, M.T.H. (2023) Dyn-qual V1.0: A High-Resolution Global Surface Water Quality Model. Geoscientific Model Development, 16, 4481-4500. https://doi.org/10.5194/gmd-16-4481-2023
[46]  Mishra, D.R., Schaeffer, B.A. and Keith, D. (2014) Performance Evaluation of Normalized Difference Chlorophyll Index in Northern Gulf of Mexico Estuaries Using the Hyperspectral Imager for the Coastal Ocean. GIScience & Remote Sensing, 51, 175-198. https://doi.org/10.1080/15481603.2014.895581
[47]  WHO (2016) Pro-tecting Surface Water for Health. Identifying, Assessing and Man-aging Drink-ing-Water Quality Risks in Surface-Water Catchments. https://www.who.int/publications/i/item/9789241510554
[48]  Mufungizi, I. (2024) Remote Sensing for Environmental Monitoring and Remediation of Areas Degraded by Mining Activities in the Democratic Republic of Congo: Call for Action. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4831905

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133