全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Numerical Simulation of Dam-Break Flows Using Radial Basis Functions: Application to Urban Flood Inundation

DOI: 10.4236/ajcm.2024.143015, PP. 318-332

Keywords: Dam-Break Flows, Numerical Simulation, Shallow Water Equations, Radial Basis Functions, Urban Flood Inundation

Full-Text   Cite this paper   Add to My Lib

Abstract:

Dam-break flows pose significant threats to urban areas due to their potential for causing rapid and extensive flooding. Traditional numerical methods for simulating these events struggle with complex urban landscapes. This paper presents an alternative approach using Radial Basis Functions to simulate dam-break flows and their impact on urban flood inundation. The proposed method adapts a new strategy based on Particle Swarm Optimization for variable shape parameter selection on meshfree formulation to enhance the numerical stability and convergence of the simulation. The method’s accuracy and efficiency are demonstrated through numerical experiments, including well-known partial and circular dam-break problems and an idealized city with a single building, highlighting its potential as a valuable tool for urban flood risk management.

References

[1]  UNEP (2013) Climate Change and Water-Related Disasters. United Nations Environment Programme.
[2]  Bolan, S., Padhye, L.P., Jasemizad, T., Govarthanan, M., Karmegam, N., Wijesekara, H., et al. (2024) Impacts of Climate Change on the Fate of Contaminants through Extreme Weather Events. Science of the Total Environment, 909, Article 168388.
https://doi.org/10.1016/j.scitotenv.2023.168388
[3]  Cea, L. and Costabile, P. (2022) Flood Risk in Urban Areas: Modelling, Management and Adaptation to Climate Change. A Review. Hydrology, 9, Article 50.
https://doi.org/10.3390/hydrology9030050
[4]  Upreti, M., Saikia, P., Shilky, Lal, P. and Kumar, A. (2024) Major Challenges in the Urbanizing World and Role of Earth Observations for Livable Cities. In: Kumar, A., Srivastava, P.K., Saikia, P. and Mall, R.K., Eds., Earth Observation in Urban Monitoring, Elsevier, 23-52.
https://doi.org/10.1016/b978-0-323-99164-3.00002-1
[5]  Wallemacq, P., Guha-Sapir, D., McClean, D., et al. (2015) Human Cost of Natural Disasters: A Global Perspective. Centre for Research on the Epidemiology of Disasters.
[6]  van Loenhout, J., McClean, D., et al. (2020) The Human Cost of Disasters: An Overview of the Last 20 Years (2000-2019). Centre for Research on the Epidemiology of Disasters.
[7]  Mondino, E., Scolobig, A., Borga, M. and Di Baldassarre, G. (2020) The Role of Experience and Different Sources of Knowledge in Shaping Flood Risk Awareness. Water, 12, Article 2130.
https://doi.org/10.3390/w12082130
[8]  Nabinejad, S. and Schüttrumpf, H. (2023) Flood Risk Management in Arid and Semi-Arid Areas: A Comprehensive Review of Challenges, Needs, and Opportunities. Water, 15, Article 3113.
https://doi.org/10.3390/w15173113
[9]  Aznar-Crespo, P., Aledo, A., Melgarejo-Moreno, J. and Vallejos-Romero, A. (2021) Adapting Social Impact Assessment to Flood Risk Management. Sustainability, 13, Article 3410.
https://doi.org/10.3390/su13063410
[10]  Najafi, H., Shrestha, P.K., Rakovec, O., Apel, H., Vorogushyn, S., Kumar, R., et al. (2024) High-Resolution Impact-Based Early Warning System for Riverine Flooding. Nature Communications, 15, Article No. 3726.
https://doi.org/10.1038/s41467-024-48065-y
[11]  Anwandhui, M. (2014) Enjeux sanitaires, socio-économiques et environnementaux liés à l’approvisionnement des eaux de surface aux Comores: Cas des trois bassins ver-sants, Fomboni, Hoani et Mbatsé à Mohéli.
https://www.pseau.org/outils/biblio/resume.php?d=5114
[12]  UNDP (2023) Comoros Flash Floods. United Nations Development Programme Report.
[13]  IFRC (2020) Comoros: Tropical Cyclone Kenneth. Red Cross Red Crescent Movement Report.
[14]  Bates, P.D. and De Roo, A.P.J. (2000) A Simple Raster-Based Model for Flood Inundation Simulation. Journal of Hydrology, 236, 54-77.
https://doi.org/10.1016/s0022-1694(00)00278-x
[15]  Sharma, V.C. and Regonda, S.K. (2021) Two-Dimensional Flood Inundation Modeling in the Godavari River Basin, India—Insights on Model Output Uncertainty. Water, 13, Article 191.
https://doi.org/10.3390/w13020191
[16]  Pizzileo, S., Moretti, G. and Orlandini, S. (2024) Flood Plain Inundation Modeling with Explicit Description of Land Surface Macrostructures. Advances in Water Resources, 188, Article 104713.
https://doi.org/10.1016/j.advwatres.2024.104713
[17]  Chiang, S., Fu, H., Hsiao, S., Hsiao, Y. and Chen, W. (2024) An Efficient 2-D Flood Inundation Modelling Based on a Data-Driven Approach. Journal of Hydrology: Regional Studies, 52, Article 101741.
https://doi.org/10.1016/j.ejrh.2024.101741
[18]  Kumar, A. and Pahar, G. (2024) Macroscopic Modeling of Urban Flood Inundation through Areal-Averaged Shallow-Water-Equations. Advances in Water Resources, 190, Article 104755.
https://doi.org/10.1016/j.advwatres.2024.104755
[19]  Li, X., Li, Y., Zheng, S., Chen, G., Zhao, P. and Wang, C. (2024) High Efficiency Integrated Urban Flood Inundation Simulation Based on the Urban Hydrologic Unit. Journal of Hydrology, 630, Article 130724.
https://doi.org/10.1016/j.jhydrol.2024.130724
[20]  Coulibaly, G., Leye, B., Tazen, F., Mounirou, L.A. and Karambiri, H. (2020) Urban Flood Modeling Using 2D Shallow-Water Equations in Ouagadougou, Burkina Faso. Water, 12, Article 2120.
https://doi.org/10.3390/w12082120
[21]  Adityawan, M.B., Sandi, C., Harlan, D., Farid, M., Kuntoro, A.A., et al. (2023) Numerical Modeling of Dam Break Induced Flow through Multiple Buildings in an Idealized City. Results in Engineering, 18, Article 101060.
https://doi.org/10.1016/j.rineng.2023.101060
[22]  Lai, W. and Khan, A.A. (2012) Modeling Dam-Break Flood over Natural Rivers Using Discontinuous Galerkin Method. Journal of Hydrodynamics, 24, 467-478.
https://doi.org/10.1016/s1001-6058(11)60268-0
[23]  Micchelli, C.A. (1986) Interpolation of Scattered Data: Distance Matrices and Conditionally Positive Definite Functions. Constructive Approximation, 2, 11-22.
https://doi.org/10.1007/bf01893414
[24]  Wendland, H. (2004) Scattered Data Approximation. Cambridge University Press.
https://doi.org/10.1017/cbo9780511617539
[25]  Buhmann, M.D. (2003) Radial Basis Functions: Theory and Implementations. Cambridge University Press.
https://doi.org/10.1017/cbo9780511543241
[26]  Li, P., Fan, C. and Grabski, J.K. (2021) A Meshless Generalized Finite Difference Method for Solving Shallow Water Equations with the Flux Limiter Technique. Engineering Analysis with Boundary Elements, 131, 159-173.
https://doi.org/10.1016/j.enganabound.2021.06.022
[27]  Darbani, M., Ouahsine, A., Villon, P., Naceur, H. and Smaoui, H. (2011) Meshless Method for Shallow Water Equations with Free Surface Flow. Applied Mathematics and Computation, 217, 5113-5124.
https://doi.org/10.1016/j.amc.2010.07.048
[28]  Chaabelasri, E., Jeyar, M. and Borthwick, A.G.L. (2019) Explicit Radial Basis Function Collocation Method for Computing Shallow Water Flows. Procedia Computer Science, 148, 361-370.
https://doi.org/10.1016/j.procs.2019.01.044
[29]  Kansa, E.J. and Carlson, R.E. (1992) Improved Accuracy of Multiquadric Interpolation Using Variable Shape Parameters. Computers & Mathematics with Applications, 24, 99-120.
https://doi.org/10.1016/0898-1221(92)90174-g
[30]  Sarra, S.A. and Sturgill, D. (2009) A Random Variable Shape Parameter Strategy for Radial Basis Function Approximation Methods. Engineering Analysis with Boundary Elements, 33, 1239-1245.
https://doi.org/10.1016/j.enganabound.2009.07.003
[31]  Xiang, S., Wang, K., Ai, Y., Sha, Y. and Shi, H. (2012) Trigonometric Variable Shape Parameter and Exponent Strategy for Generalized Multiquadric Radial Basis Function Approximation. Applied Mathematical Modelling, 36, 1931-1938.
https://doi.org/10.1016/j.apm.2011.07.076
[32]  Bacar, A.H. and Rawhoudine, S.C. (2024) An Optimal Multiquadric Variable Shape Parameter for Boundary Value Problems Using Particle Swarm Optimization. Journal of Mathematics Research, 16, 108-131.
https://doi.org/10.5539/jmr.v16n2p108
[33]  Fan, Y., Ao, T., Yu, H., Huang, G. and Li, X. (2017) A Coupled 1D-2D Hydrodynamic Model for Urban Flood Inundation. Advances in Meteorology, 2017, Article 2819308.
https://doi.org/10.1155/2017/2819308
[34]  Dorn, H., Vetter, M. and Höfle, B. (2014) GIS-Based Roughness Derivation for Flood Simulations: A Comparison of Orthophotos, Lidar and Crowdsourced Geodata. Remote Sensing, 6, 1739-1759.
https://doi.org/10.3390/rs6021739
[35]  Randall, J.L. (1992) Numerical Methods for Conservation Laws. Lectures in Mathematics, ETH Zürich.
[36]  Morton, K. (1996) Numerical Solution of Convection-Diffusion Problems. Chapman & Hall.
[37]  Shu, C. (1988) Total-Variation-Diminishing Time Discretizations. SIAM Journal on Scientific and Statistical Computing, 9, 1073-1084.
https://doi.org/10.1137/0909073
[38]  Hon, Y.C. and Schaback, R. (2001) On Unsymmetric Collocation by Radial Basis Functions. Applied Mathematics and Computation, 119, 177-186.
https://doi.org/10.1016/s0096-3003(99)00255-6
[39]  Afiatdoust, F. and Esmaeilbeigi, M. (2015) Optimal Variable Shape Parameters Using Genetic Algorithm for Radial Basis Function Approximation. Ain Shams Engineering Journal, 6, 639-647.
https://doi.org/10.1016/j.asej.2014.10.019
[40]  De Moura, C.A. and Kubrusly, C.S. (2013) The Courant-Friedrichs-Lewy (CFL) Condition: 80 Years after Its Discovery. Birkhäuser.
https://doi.org/10.1007/978-0-8176-8394-8
[41]  Liang, D., Lin, B. and Falconer, R.A. (2006) Simulation of Rapidly Varying Flow Using an Efficient TVD-MacCormack Scheme. International Journal for Numerical Methods in Fluids, 53, 811-826.
https://doi.org/10.1002/fld.1305
[42]  Seyedashraf, O. and Akhtari, A.A. (2017) Two-Dimensional Numerical Modeling of Dam-Break Flow Using a New TVD Finite-Element Scheme. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39, 4393-4401.
https://doi.org/10.1007/s40430-017-0776-y
[43]  Neumann, P. and Bungartz, H. (2015) Dynamically Adaptive Lattice Boltzmann Simulation of Shallow Water Flows with the Peano Framework. Applied Mathematics and Computation, 267, 795-804.
https://doi.org/10.1016/j.amc.2014.10.049
[44]  Soares-Frazão, S. and Zech, Y. (2007) Experimental Study of Dam-Break Flow against an Isolated Obstacle. Journal of Hydraulic Research, 45, 27-36.
https://doi.org/10.1080/00221686.2007.9521830

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133