Prediction of urban growth is vital in planning for the future in terms of socio-economic indicators as well as ensuring growth of urban areas meet sustainability goals. The objective of this paper is to provide a comprehensive review on the evolution of various urban growth models and try to provide a narrative on why applicability and acceptability of such models remains limited. We explore and discuss the models since the first application in urban planning to currently used models. Through this discussion, analysis on reasons of evolution and improvement of these models has been done. Three popular models for urban growth modelling namely Cellular Automata (CA), Agent Based Model (ABM), and Artificial Neural Networks (ANN) have been described briefly. The explanation on why and how these models were improvised to better simulate urban growth has been discussed. The inefficiencies of these models as individual models and how integrated models have resolved these issues have been highlighted. This paper summarizes that evolution and development of models has mainly focused to improvise the model component inefficiencies and to reflect the true nature of growth. The inability of current urban growth models to incorporate policy scenarios as driving factors has been discussed and this has been highlighted as a reason for lack of global acceptability of such models. This paper thus recommends the application of different urban growth models based on the generalized objectives of modelling to enhance their credibility as well as bringing a uniformity in modelling approaches around globe.
References
[1]
Aarthi, A. D., & Gnanappazham, L. (2018). Urban Growth Prediction Using Neural Network Coupled Agents-Based Cellular Automata Model for Sriperumbudur Taluk, Tamil Nadu, India. The Egyptian Journal of Remote Sensing and Space Science, 21, 353-362. https://doi.org/10.1016/j.ejrs.2017.12.004
[2]
Aburas, M. M., Ho, Y. M., Pradhan, B., Salleh, A. H., & Alazaiza, M. Y. D. (2021). Spatio-temporal Simulation of Future Urban Growth Trends Using an Integrated Ca-Markov Model. Arabian Journal of Geosciences, 14, Article No. 131. https://doi.org/10.1007/s12517-021-06487-8
[3]
Aburas, M. M., Ho, Y. M., Ramli, M. F., & Ash’aari, Z. H. (2016). The Simulation and Prediction of Spatio-Temporal Urban Growth Trends Using Cellular Automata Models: A Review. International Journal of Applied Earth Observation and Geoinformation, 52, 380-389. https://doi.org/10.1016/j.jag.2016.07.007
[4]
Aburas, M. M., Ho, Y. M., Ramli, M. F., & Ash’aari, Z. H. (2017). Improving the Capability of an Integrated Ca-Markov Model to Simulate Spatio-Temporal Urban Growth Trends Using an Analytical Hierarchy Process and Frequency Ratio. International Journal of Applied Earth Observation and Geoinformation, 59, 65-78. https://doi.org/10.1016/j.jag.2017.03.006
[5]
Adams, J. S. (1939). Hoyt, H. 1939: The Structure and Growth of Residential Neighborhoods in American Cities. Washington, DC: Federal Housing Administration. Progress in Human Geography, 29, 321-325. https://doi.org/10.1191/0309132505ph552xx
[6]
Akyol Alay, M., Tunçay, H. E., & Clarke, K. C. (2021). SLEUTH Modeling Informed by Landscape Ecology Principles: Case Study Using Scenario-Based Planning in Sariyer, Istanbul, Turkey. Journal of Urban Planning and Development, 147, Article ID: 05021043. https://doi.org/10.1061/(asce)up.1943-5444.0000746
[7]
Allen, P., & Sanglier, M. (1978). Dynamic Models of Urban Growth. Journal of Social and Biological Systems, 1, 265-280. https://doi.org/10.1016/0140-1750(78)90026-x
[8]
Almeida, C. M. D., Monteiro, A. M. V., Câmara, G., Soares‐Filho, B. S., Cerqueira, G. C., Pennachin, C. L. et al. (2005). GIS and Remote Sensing as Tools for the Simulation of Urban Land‐Use Change. International Journal of Remote Sensing, 26, 759-774. https://doi.org/10.1080/01431160512331316865
[9]
Alqadhi, S., Mallick, J., Balha, A., Bindajam, A., Singh, C. K., & Hoa, P. V. (2021). Spatial and Decadal Prediction of Land Use/Land Cover Using Multi-Layer Perceptron-Neural Network (MLP-NN) Algorithm for a Semi-Arid Region of Asir, Saudi Arabia. Earth Science Informatics, 14, 1547-1562. https://doi.org/10.1007/s12145-021-00633-2
[10]
An, L. (2012). Modeling Human Decisions in Coupled Human and Natural Systems: Review of Agent-Based Models. Ecological Modelling, 229, 25-36. https://doi.org/10.1016/j.ecolmodel.2011.07.010
[11]
An, L., Linderman, M., Qi, J., Shortridge, A., & Liu, J. (2005). Exploring Complexity in a Human-Environment System: An Agent-Based Spatial Model for Multidisciplinary and Multiscale Integration. Annals of the Association of American Geographers, 95, 54-79. https://doi.org/10.1111/j.1467-8306.2005.00450.x
[12]
Arasteh, M. A., & Farjami, Y. (2021). New Hydro-Economic System Dynamics and Agent-Based Modeling for Sustainable Urban Groundwater Management: A Case Study of Dehno, Yazd Province, Iran. Sustainable Cities and Society, 72, Article ID: 103078. https://doi.org/10.1016/j.scs.2021.103078
[13]
Balakrishnan, T. R., & Jarvis, G. K. (1991). Is the Burgess Concentric Zonal Theory of Spatial Differentiation Still Applicable to Urban Canada? Canadian Review of Sociology/Revue Canadienne de Sociologie, 28, 526-539. https://doi.org/10.1111/j.1755-618x.1991.tb00168.x
[14]
Barra, T. d. l., & Rickaby, P. A. (2016). Modelling Regional Energy-Use: A Land-Use, Transport, and Energy-Evaluation Model. Environment and Planning B: Planning and Design, 9, 429-443. https://doi.org/10.1068/b090429
[15]
Barreira-González, P., & Barros, J. (2017). Configuring the Neighbourhood Effect in Irregular Cellular Automata Based Models. International Journal of Geographical Information Science, 31, 617-636. https://doi.org/10.1080/13658816.2016.1219035
[16]
Basse, R. M., Charif, O., & Bódis, K. (2016). Spatial and Temporal Dimensions of Land Use Change in Cross Border Region of Luxembourg. Development of a Hybrid Approach Integrating GIS, Cellular Automata and Decision Learning Tree Models. Applied Geography, 67, 94-108. https://doi.org/10.1016/j.apgeog.2015.12.001
[17]
Basse, R. M., Omrani, H., Charif, O., Gerber, P., & Bódis, K. (2014). Land Use Changes Modelling Using Advanced Methods: Cellular Automata and Artificial Neural Networks. the Spatial and Explicit Representation of Land Cover Dynamics at the Cross-Border Region Scale. Applied Geography, 53, 160-171. https://doi.org/10.1016/j.apgeog.2014.06.016
[18]
Batty, M. (2008). The Size, Scale, and Shape of Cities. Science, 319, 769-771. https://doi.org/10.1126/science.1151419
[19]
Batty, M. (2009). Urban Modeling. In R. Kitchin, & N. Thrift (Eds.), International Encyclopedia of Human Geography (pp. 51-58). Elsevier. https://doi.org/10.1016/b978-008044910-4.01092-0
[20]
Batty, M. (2011). Modeling and Simulation in Geographic Information Science: Integrated Models and Grand Challenges. Procedia—Social and Behavioral Sciences, 21, 10-17. https://doi.org/10.1016/j.sbspro.2011.07.003
[21]
Batty, M. (2015). Urban Modelling. International Encyclopedia of Human Geography.
[22]
Batty, M. (2020). Geosimulation and Urban Modeling. In B. T. Audrey (Ed.), International Encyclopedia of Human Geography (pp. 119-125). Elsevier. https://doi.org/10.1016/b978-0-08-102295-5.10442-1
[23]
Batty, M., & Xie, Y. (1994). Research Article. Modelling Inside GIS: Part 1. Model Structures, Exploratory Spatial Data Analysis and Aggregation. International Journal of Geographical Information Systems, 8, 291-307. https://doi.org/10.1080/02693799408902001
[24]
Batty, M., Crooks, A. T., See, L. M., & Heppenstall, A. J. (2012). Perspectives on Agent-Based Models and Geographical Systems. In A. J. Heppenstall, et al. (Eds.), Agent-Based Models of Geographical Systems (pp. 1-15). Springer. https://doi.org/10.1007/978-90-481-8927-4_1
[25]
Batty, M., Xie, Y., & Sun, Z. (1999). Modeling Urban Dynamics through GIS-Based Cellular Automata. Computers, Environment and Urban Systems, 23, 205-233. https://doi.org/10.1016/s0198-9715(99)00015-0
[26]
Berling-Wolff, S., & Wu, J. (2004). Modeling Urban Landscape Dynamics: A Review. Ecological Research, 19, 119-129. https://doi.org/10.1111/j.1440-1703.2003.00611.x
[27]
Brown, N. (2015). CSISS Classics—Robert Park and Ernest Burgess: Urban Ecology Studies, 1925.
[28]
Coelho, C. G. C., Abreu, C. G., Ramos, R. M., D. Mendes, A. H., Teodoro, G., & Ralha, C. G. (2016). MASE-BDI: Agent-Based Simulator for Environmental Land Change with Efficient and Parallel Auto-tuning. Applied Intelligence, 45, 904-922. https://doi.org/10.1007/s10489-016-0797-8
[29]
Cao, M., Huang, M., Xu, R., Lü, G., & Chen, M. (2019). A Grey Wolf Optimizer-Cellular Automata Integrated Model for Urban Growth Simulation and Optimization. Transactions in GIS, 23, 672-687. https://doi.org/10.1111/tgis.12517
[30]
Cao, Y., Zhang, X., Fu, Y., Lu, Z., & Shen, X. (2020). Urban Spatial Growth Modeling Using Logistic Regression and Cellular Automata: A Case Study of Hangzhou. Ecological Indicators, 113, Article ID: 106200. https://doi.org/10.1016/j.ecolind.2020.106200
[31]
Chadwick, G. F. (1971). A Systems View of Planning: Towards a Theory of the Urban and regional Planning Process (390 p.). Pergamon Press.
[32]
Chasia, S., Olang, L. O., & Sitoki, L. (2023). Modelling of Land-Use/Cover Change Trajectories in a Transboundary Catchment of the Sio-Malaba-Malakisi Region in East Africa Using the Clue-S Model. Ecological Modelling, 476, Article ID: 110256. https://doi.org/10.1016/j.ecolmodel.2022.110256
[33]
Chen, Y., Li, X., Liu, X., Huang, H., & Ma, S. (2019). Simulating Urban Growth Boundaries Using a Patch-Based Cellular Automaton with Economic and Ecological Constraints. International Journal of Geographical Information Science, 33, 55-80. https://doi.org/10.1080/13658816.2018.1514119
Cheng, L., & Liu, C. (2022). Modelling Urban Growth under Contemporary China’s Transferable Development Rights Programme: A Case Study from Ezhou, China. Environmental Impact Assessment Review, 96, Article ID: 106830. https://doi.org/10.1016/j.eiar.2022.106830
[36]
Clarke, K. C. (2014). Cellular Automata and Agent-Based Models. In M. M. Fischer, & P. Nijkamp (Eds.), Handbook of Regional Science (pp. 1217-1233). Springer. https://doi.org/10.1007/978-3-642-23430-9_63
[37]
Clarke, K. C. (2019). Mathematical Foundations of Cellular Automata and Complexity Theory. In L. D’Acci (Ed.), The Mathematics of Urban Morphology (pp. 163-170). Springer International Publishing. https://doi.org/10.1007/978-3-030-12381-9_8
[38]
Couclelis, H. (1985). Cellular Worlds: A Framework for Modeling Micro-Macro Dynamics. Environment and Planning A: Economy and Space, 17, 585-596. https://doi.org/10.1068/a170585
[39]
Crooks, A., Heppenstall, A., Malleson, N., & Manley, E. (2021). Agent-Based Modeling and the City: A Gallery of Applications. In W. Z. Shi, et al. (Eds.), Urban Informatics (pp. 885-910). Springer. https://doi.org/10.1007/978-981-15-8983-6_46
[40]
Cui, X., Li, S., Wang, X., & Xue, X. (2019). Driving Factors of Urban Land Growth in Guangzhou and Its Implications for Sustainable Development. Frontiers of Earth Science, 13, 464-477. https://doi.org/10.1007/s11707-018-0692-1
[41]
Dahal, K. R., & Chow, T. E. (2014). An Agent-Integrated Irregular Automata Model of Urban Land-Use Dynamics. International Journal of Geographical Information Science, 28, 2281-2303. https://doi.org/10.1080/13658816.2014.917646
[42]
Dai, E., Ma, L., Yang, W., Wang, Y., Yin, L., & Tong, M. (2020). Agent-Based Model of Land System: Theory, Application and Modelling Framework. Journal of Geographical Sciences, 30, 1555-1570. https://doi.org/10.1007/s11442-020-1799-3
[43]
Deadman, P., Robinson, D., Moran, E., & Brondizio, E. (2004). Colonist Household Decision-Making and Land-Use Change in the Amazon Rainforest: An Agent-Based Simulation. Environment and Planning B: Planning and Design, 31, 693-709. https://doi.org/10.1068/b3098
[44]
Diehl, J. A., Sweeney, E., Wong, B., Sia, C. S., Yao, H., & Prabhudesai, M. (2020). Feeding Cities: Singapore’s Approach to Land Use Planning for Urban Agriculture. Global Food Security, 26, Article ID: 100377. https://doi.org/10.1016/j.gfs.2020.100377
[45]
Echenique, M. H., Flowerdew, A. D. J., Hunt, J. D., Mayo, T. R., Skidmore, I. J., & Simmonds, D. C. (1990). The MEPLAN Models of Bilbao, Leeds and Dortmund. Transport Reviews, 10, 309-322. https://doi.org/10.1080/01441649008716764
[46]
Evans, T. P., & Kelley, H. (2004). Multi-Scale Analysis of a Household Level Agent-Based Model of Landcover Change. Journal of Environmental Management, 72, 57-72. https://doi.org/10.1016/j.jenvman.2004.02.008
[47]
Eyelade, D., Clarke, K. C., & Ijagbone, I. (2022). Impacts of Spatiotemporal Resolution and Tiling on SLEUTH Model Calibration and Forecasting for Urban Areas with Unregulated Growth Patterns. International Journal of Geographical Information Science, 36, 1037-1058. https://doi.org/10.1080/13658816.2021.2011292
[48]
Feng, Y. J., Wu, P. Q., Tong, X. H. et al. (2022). The Effects of Factor Generalization Scales on the Repro-Duction of Dynamic Urban Growth. Geo-Spatial Information Science, 25, 457-475.
[49]
Feng, Y., & Qi, Y. (2018). Modeling Patterns of Land Use in Chinese Cities Using an Integrated Cellular Automata Model. ISPRS International Journal of Geo-Information, 7, Article No. 403. https://doi.org/10.3390/ijgi7100403
[50]
Feng, Y., & Tong, X. (2017). Calibrating Nonparametric Cellular Automata with a Generalized Additive Model to Simulate Dynamic Urban Growth. Environmental Earth Sciences, 76, Article No. 496. https://doi.org/10.1007/s12665-017-6828-x
[51]
Feng, Y., & Tong, X. (2019). Incorporation of Spatial Heterogeneity-Weighted Neighborhood into Cellular Automata for Dynamic Urban Growth Simulation. GIScience & Remote Sensing, 56, 1024-1045. https://doi.org/10.1080/15481603.2019.1603187
[52]
Feng, Y., & Tong, X. (2020). A New Cellular Automata Framework of Urban Growth Modeling by Incorporating Statistical and Heuristic Methods. International Journal of Geographical Information Science, 34, 74-97. https://doi.org/10.1080/13658816.2019.1648813
[53]
Feng, Y., Cai, Z., Tong, X., Wang, J., Gao, C., Chen, S. et al. (2018). Urban Growth Modeling and Future Scenario Projection Using Cellular Automata (CA) Models and the R Package Optimx. ISPRS International Journal of Geo-Information, 7, Article No. 387. https://doi.org/10.3390/ijgi7100387
[54]
Feng, Y., Wang, R., Tong, X., & Shafizadeh-Moghadam, H. (2019). How Much Can Temporally Stationary Factors Explain Cellular Automata-Based Simulations of Past and Future Urban Growth? Computers, Environment and Urban Systems, 76, 150-162. https://doi.org/10.1016/j.compenvurbsys.2019.04.010
[55]
Filatova, T., Verburg, P. H., Parker, D. C., & Stannard, C. A. (2013). Spatial Agent-Based Models for Socio-Ecological Systems: Challenges and Prospects. Environmental Modelling & Software, 45, 1-7. https://doi.org/10.1016/j.envsoft.2013.03.017
[56]
Filomena, G., & Verstegen, J. A. (2021). Modelling the Effect of Landmarks on Pedestrian Dynamics in Urban Environments. Computers, Environment and Urban Systems, 86, Article ID: 101573. https://doi.org/10.1016/j.compenvurbsys.2020.101573
[57]
Gao, C., Feng, Y., Tong, X., Lei, Z., Chen, S., & Zhai, S. (2020). Modeling Urban Growth Using Spatially Heterogeneous Cellular Automata Models: Comparison of Spatial Lag, Spatial Error and GWR. Computers, Environment and Urban Systems, 81, Article ID: 101459. https://doi.org/10.1016/j.compenvurbsys.2020.101459
[58]
Gautrin, J. (1975). An Evaluation of the Impact of Aircraft Noise on Property Values with a Simple Model of Urban Land Rent. Land Economics, 51, 80-86. https://doi.org/10.2307/3145143
[59]
Geng, J., Shen, S., Cheng, C., & Dai, K. (2022). A Hybrid Spatiotemporal Convolution-Based Cellular Automata Model (ST-CA) for Land-Use/Cover Change Simulation. International Journal of Applied Earth Observation and Geoinformation, 110, Article ID: 102789. https://doi.org/10.1016/j.jag.2022.102789
[60]
Grekousis, G. (2019). Artificial Neural Networks and Deep Learning in Urban Geography: A Systematic Review and Meta-analysis. Computers, Environment and Urban Systems, 74, 244-256. https://doi.org/10.1016/j.compenvurbsys.2018.10.008
[61]
Gurram, S., Stuart, A. L., & Pinjari, A. R. (2019). Agent-Based Modeling to Estimate Exposures to Urban Air Pollution from Transportation: Exposure Disparities and Impacts of High-Resolution Data. Computers, Environment and Urban Systems, 75, 22-34. https://doi.org/10.1016/j.compenvurbsys.2019.01.002
[62]
Hansen, H. S. (2010). Modelling the Future Coastal Zone Urban Development as Implied by the IPCC SRES and Assessing the Impact from Sea Level Rise. Landscape and Urban Planning, 98, 141-149. https://doi.org/10.1016/j.landurbplan.2010.08.018
[63]
Hansen, W. G. (1959). How Accessibility Shapes Land Use. Journal of the American Institute of Planners, 25, 73-76. https://doi.org/10.1080/01944365908978307
[64]
Harris, C. D., & Ullman, E. L. (1945). The Nature of Cities. The Annals of the American Academy of Political and Social Science, 242, 7-17. https://doi.org/10.1177/000271624524200103
[65]
Hashemi Aslani, Z., Omidvar, B., & Karbassi, A. (2022). Integrated Model for Land-Use Transformation Analysis Based on Multi-Layer Perception Neural Network and Agent-Based Model. Environmental Science and Pollution Research, 29, 59770-59783. https://doi.org/10.1007/s11356-022-19392-8
[66]
Hassan, M. I., & Elhassan, S. M. M. (2020). Modelling of Urban Growth and Planning: A Critical Review. Journal of Building Construction and Planning Research, 8, 245-262. https://doi.org/10.4236/jbcpr.2020.84016
[67]
Heppenstall, A. J. J., Crooks, A. T., See, L. M., & Batty, M. (2012). Agent-Based Models of Geographical Systems.
[68]
Hester, J. (1970). Systems Analysis for Social Policies: Urban Dynamics. Jay W. Forrester. M.I.T. Press, Cambridge, Mass., 1969. Xiv + 290 Pp., Illus. $12.50. Science, 168, 693-694. https://doi.org/10.1126/science.168.3932.693
[69]
Hewitt, R., van Delden, H., & Escobar, F. (2014). Participatory Land Use Modelling, Pathways to an Integrated Approach. Environmental Modelling & Software, 52, 149-165. https://doi.org/10.1016/j.envsoft.2013.10.019
[70]
Hong, S., Hui, E. C., & Lin, Y. (2022). Relationship between Urban Spatial Structure and Carbon Emissions: A Literature Review. Ecological Indicators, 144, Article ID: 109456. https://doi.org/10.1016/j.ecolind.2022.109456
[71]
K Agyemang, F. S., Silva, E., & Fox, S. (2019). Modelling and Simulating “Informal Urbanization”: An Integrated Agent-Based and Cellular Automata Model of Urban Residential Growth in Ghana. Environment and Planning B: Urban Analytics and City Science, 50, 863-877.
[72]
Kaviari, F., Mesgari, M. S., Seidi, E., & Motieyan, H. (2019). Simulation of Urban Growth Using Agent-Based Modeling and Game Theory with Different Temporal Resolutions. Cities, 95, Article ID: 102387. https://doi.org/10.1016/j.cities.2019.06.018
[73]
Khan, A., & Sudheer, M. (2022). Machine Learning-Based Monitoring and Modeling for Spatio-Temporal Urban Growth of Islamabad. The Egyptian Journal of Remote Sensing and Space Science, 25, 541-550. https://doi.org/10.1016/j.ejrs.2022.03.012
[74]
Kim, Y., Newman, G., & Güneralp, B. (2020). A Review of Driving Factors, Scenarios, and Topics in Urban Land Change Models. Land, 9, 246. https://www.mdpi.com/2073-445X/9/8/246
[75]
Kisamba, F. C., & Li, F. (2022). Analysis and Modelling Urban Growth of Dodoma Urban District in Tanzania Using an Integrated Ca-Markov Model. GeoJournal, 88, 511-532. https://doi.org/10.1007/s10708-022-10617-4
[76]
Koumetio Tekouabou, S. C., Diop, E. B., Azmi, R., Jaligot, R., & Chenal, J. (2022). Reviewing the Application of Machine Learning Methods to Model Urban Form Indicators in Planning Decision Support Systems: Potential, Issues and Challenges. Journal of King Saud University—Computer and Information Sciences, 34, 5943-5967. https://doi.org/10.1016/j.jksuci.2021.08.007
[77]
Kumar, V., Singh, V. K., Gupta, K., & Jha, A. K. (2021). Integrating Cellular Automata and Agent-Based Modeling for Predicting Urban Growth: A Case of Dehradun City. Journal of the Indian Society of Remote Sensing, 49, 2779-2795. https://doi.org/10.1007/s12524-021-01418-2
[78]
Kushwaha, K., Singh, M. M., Singh, S. K., & Patel, A. (2021). Urban Growth Modeling Using Earth Observation Datasets, Cellular Automata-Markov Chain Model and Urban Metrics to Measure Urban Footprints. Remote Sensing Applications: Society and Environment, 22, Article ID: 100479. https://doi.org/10.1016/j.rsase.2021.100479
[79]
Lee, D. B. (1973). Requiem for Large-Scale Models. Journal of the American Institute of Planners, 39, 163-178. https://doi.org/10.1080/01944367308977851
[80]
Li, F., Li, Z., Chen, H., Chen, Z., & Li, M. (2020). An Agent-Based Learning-Embedded Model (Abm-Learning) for Urban Land Use Planning: A Case Study of Residential Land Growth Simulation in Shenzhen, China. Land Use Policy, 95, Article ID: 104620. https://doi.org/10.1016/j.landusepol.2020.104620
[81]
Li, X., & Gong, P. (2016). Urban Growth Models: Progress and Perspective. Science Bulletin, 61, 1637-1650. https://doi.org/10.1007/s11434-016-1111-1
[82]
Li, X., & Yeh, A. G. (2001). Calibration of Cellular Automata by Using Neural Networks for the Simulation of Complex Urban Systems. Environment and Planning A: Economy and Space, 33, 1445-1462. https://doi.org/10.1068/a33210
[83]
Li, X., Lao, C., Liu, Y., Liu, X., Chen, Y., Li, S. et al. (2013). Early Warning of Illegal Development for Protected Areas by Integrating Cellular Automata with Neural Networks. Journal of Environmental Management, 130, 106-116. https://doi.org/10.1016/j.jenvman.2013.08.055
[84]
Liu, X., Liang, X., Li, X., Xu, X., Ou, J., Chen, Y. et al. (2017). A Future Land Use Simulation Model (FLUS) for Simulating Multiple Land Use Scenarios by Coupling Human and Natural Effects. Landscape and Urban Planning, 168, 94-116. https://doi.org/10.1016/j.landurbplan.2017.09.019
[85]
Liu, Y. (2012). Modelling Sustainable Urban Growth in a Rapidly Urbanising Region Using a Fuzzy-Constrained Cellular Automata Approach. International Journal of Geographical Information Science, 26, 151-167. https://doi.org/10.1080/13658816.2011.577434
[86]
Liu, Y., & Phinn, S. R. (2003). Modelling Urban Development with Cellular Automata Incorporating Fizzy-Set Approaches. Computers,Environment and Urban Systems,27, 637-658. https://doi.org/10.1016/S0198-9715(02)00069-8
[87]
Liu, Y., Batty, M., Wang, S., & Corcoran, J. (2021). Modelling Urban Change with Cellular Automata: Contemporary Issues and Future Research Directions. Progress in Human Geography, 45, 3-24. https://doi.org/10.1177/0309132519895305
[88]
Liu, Y., Feng, Y., & Pontius, R. (2014). Spatially-Explicit Simulation of Urban Growth through Self-Adaptive Genetic Algorithm and Cellular Automata Modelling. Land, 3, 719-738. https://doi.org/10.3390/land3030719
[89]
Long, Y., Jin, X., Yang, X., & Zhou, Y. (2014). Reconstruction of Historical Arable Land Use Patterns Using Constrained Cellular Automata: A Case Study of Jiangsu, China. Applied Geography, 52, 67-77. https://doi.org/10.1016/j.apgeog.2014.05.001
[90]
Lu, Y., Laffan, S., Pettit, C., & Cao, M. (2020). Land Use Change Simulation and Analysis Using a Vector Cellular Automata (CA) Model: A Case Study of Ipswich City, Queensland, Australia. Environment and Planning B: Urban Analytics and City Science, 47, 1605-1621. https://doi.org/10.1177/2399808319830971
[91]
Maithani, S. (2009). A Neural Network Based Urban Growth Model of an Indian City. Journal of the Indian Society of Remote Sensing, 37, 363-376. https://doi.org/10.1007/s12524-009-0041-7
[92]
Maria de Almeida, C., Batty, M., Vieira Monteiro, A. M., Câmara, G., Soares-Filho, B. S., Cerqueira, G. C. et al. (2003). Stochastic Cellular Automata Modeling of Urban Land Use Dynamics: Empirical Development and Estimation. Computers, Environment and Urban Systems, 27, 481-509. https://doi.org/10.1016/s0198-9715(02)00042-x
[93]
Martínez, F. (1996). MUSSA: Land Use Model for Santiago City. Transportation Research Record: Journal of the Transportation Research Board, 1552, 126-134. https://doi.org/10.3141/1552-18
[94]
Mashhadi Ali, A., Shafiee, M. E., & Berglund, E. Z. (2017). Agent-Based Modeling to Simulate the Dynamics of Urban Water Supply: Climate, Population Growth, and Water Shortages. Sustainable Cities and Society, 28, 420-434. https://doi.org/10.1016/j.scs.2016.10.001
[95]
Matthews, R. B., Gilbert, N. G., Roach, A., Polhill, J. G., & Gotts, N. M. (2007). Agent-Based Land-Use Models: A Review of Applications. Landscape Ecology, 22, 1447-1459. https://doi.org/10.1007/s10980-007-9135-1
[96]
Maturana, F., Morales, M., Peña-Cortés, F., Peña, M. A., & Vielma, C. (2021). Urban Growth, Real Estate Development and Indigenous Property: Simulating the Expansion Process in the City of Temuco, Chile. ISPRS International Journal of Geo-Information, 10, Article No. 101. https://doi.org/10.3390/ijgi10020101
[97]
Motieyan, H., & Mesgari, M. S. (2018). An Agent-Based Modeling Approach for Sustainable Urban Planning from Land Use and Public Transit Perspectives. Cities, 81, 91-100. https://doi.org/10.1016/j.cities.2018.03.018
[98]
Mozaffaree Pour, N., & Oja, T. (2021). Urban Expansion Simulated by Integrated Cellular Automata and Agent-Based Models; an Example of Tallinn, Estonia. Urban Science, 5, Article No. 85. https://doi.org/10.3390/urbansci5040085
[99]
National Research, Council (2014). Advancing Land Change Modeling: Opportunities and Research Requirements. The National Academies Press.
[100]
O’Sullivan, D., Millington, J., Perry, G., & Wainwright, J. (2012). Agent-Based Models—Because They’re Worth It? In A. J. Heppenstall, et al. (Eds.), Agent-Based Models of Geographical Systems (pp. 109-123). Springer. https://doi.org/10.1007/978-90-481-8927-4_6
[101]
Okwuashi, O., & Ndehedehe, C. E. (2021). Integrating Machine Learning with Markov Chain and Cellular Automata Models for Modelling Urban Land Use Change. Remote Sensing Applications: Society and Environment, 21, Article ID: 100461. https://doi.org/10.1016/j.rsase.2020.100461
[102]
Omrani, H., Tayyebi, A., & Pijanowski, B. (2017). Integrating the Multi-Label Land-Use Concept and Cellular Automata with the Artificial Neural Network-Based Land Transformation Model: An Integrated ML-CA-LTM Modeling Framework. GIScience & Remote Sensing, 54, 283-304. https://doi.org/10.1080/15481603.2016.1265706
[103]
Park, J. (2014). Land Rent Theory Revisited. Science & Society, 78, 88-109. https://doi.org/10.1521/siso.2014.78.1.88
[104]
Park, S., Jeon, S., Kim, S., & Choi, C. (2011). Prediction and Comparison of Urban Growth by Land Suitability Index Mapping Using GIS and RS in South Korea. Landscape and Urban Planning, 99, 104-114. https://doi.org/10.1016/j.landurbplan.2010.09.001
[105]
Peng, K., Jiang, W., Deng, Y., Liu, Y., Wu, Z., & Chen, Z. (2020). Simulating Wetland Changes under Different Scenarios Based on Integrating the Random Forest and CLUE-S Models: A Case Study of Wuhan Urban Agglomeration. Ecological Indicators, 117, Article ID: 106671. https://doi.org/10.1016/j.ecolind.2020.106671
[106]
Phipps, M., & Langlois, A. (1997). Spatial Dynamics, Cellular Automata, and Parallel Processing Computers. Environment and Planning B: Planning and Design, 24, 193-204. https://doi.org/10.1068/b240193
[107]
Pinto, N., Antunes, A. P., & Roca, J. (2017). Applicability and Calibration of an Irregular Cellular Automata Model for Land Use Change. Computers, Environment and Urban Systems, 65, 93-102. https://doi.org/10.1016/j.compenvurbsys.2017.05.005
[108]
Qiao, W., Gao, J., Liu, Y., Qin, Y., Lu, C., & Ji, Q. (2017). Evaluation of Intensive Urban Land Use Based on an Artificial Neural Network Model: A Case Study of Nanjing City, China. Chinese Geographical Science, 27, 735-746. https://doi.org/10.1007/s11769-017-0905-7
[109]
Ren, Y., Lü, Y., Comber, A., Fu, B., Harris, P., & Wu, L. (2019). Spatially Explicit Simulation of Land Use/Land Cover Changes: Current Coverage and Future Prospects. Earth-Science Reviews, 190, 398-415. https://doi.org/10.1016/j.earscirev.2019.01.001
[110]
Rimal, B., Zhang, L., Keshtkar, H., Haack, B., Rijal, S., & Zhang, P. (2018). Land Use/Land Cover Dynamics and Modeling of Urban Land Expansion by the Integration of Cellular Automata and Markov Chain. ISPRS International Journal of Geo-Information, 7, Article No. 154. https://doi.org/10.3390/ijgi7040154
[111]
Robinson, D. T., Murray-Rust, D., Rieser, V., Milicic, V., & Rounsevell, M. (2012). Modelling the Impacts of Land System Dynamics on Human Well-Being: Using an Agent-Based Approach to Cope with Data Limitations in Koper, Slovenia. Computers, Environment and Urban Systems, 36, 164-176. https://doi.org/10.1016/j.compenvurbsys.2011.10.002
[112]
Roodposhti, M. S., Aryal, J., & Bryan, B. A. (2019). A Novel Algorithm for Calculating Transition Potential in Cellular Automata Models of Land-Use/Cover Change. Environmental Modelling & Software, 112, 70-81. https://doi.org/10.1016/j.envsoft.2018.10.006
[113]
Roodposhti, M. S., Hewitt, R. J., & Bryan, B. A. (2020). Towards Automatic Calibration of Neighbourhood Influence in Cellular Automata Land-Use Models. Computers, Environment and Urban Systems, 79, Article ID: 101416. https://doi.org/10.1016/j.compenvurbsys.2019.101416
[114]
Sakieh, Y., Amiri, B. J., Danekar, A., Feghhi, J., & Dezhkam, S. (2015). Scenario-Based Evaluation of Urban Development Sustainability: An Integrative Modeling Approach to Compromise between Urbanization Suitability Index and Landscape Pattern. Environment, Development and Sustainability, 17, 1343-1365. https://doi.org/10.1007/s10668-014-9609-7
[115]
Santé, I., García, A. M., Miranda, D., & Crecente, R. (2010). Cellular Automata Models for the Simulation of Real-World Urban Processes: A Review and Analysis. Landscape and Urban Planning, 96, 108-122. https://doi.org/10.1016/j.landurbplan.2010.03.001
[116]
Shen, T., Wang, W., Hou, M., Guo, Z., Xue, L., & Yang, K. (2007). Study on Spatio-Temporal System Dynamic Models of Urban Growth. Systems Engineering—Theory & Practice, 27, 10-17. https://doi.org/10.1016/s1874-8651(08)60002-2
[117]
Sipahioğlu, N., & Çağdaş, G. (2022). Scenario-Based Cellular Automata and Artificial Neural Networks in Urban Growth Modeling. Gazi University Journal of Science, 36, 20-37. https://doi.org/10.35378/gujs.998073
[118]
Sohl, T. L., & Claggett, P. R. (2013). Clarity versus Complexity: Land-Use Modeling as a Practical Tool for Decision-makers. Journal of Environmental Management, 129, 235-243. https://doi.org/10.1016/j.jenvman.2013.07.027
[119]
Spyra, M., Kleemann, J., Calò, N. C., Schürmann, A., & Fürst, C. (2021). Protection of Peri-Urban Open Spaces at the Level of Regional Policy-Making: Examples from Six European Regions. Land Use Policy, 107, Article ID: 105480. https://doi.org/10.1016/j.landusepol.2021.105480
[120]
Stevens, D., Dragicevic, S., & Rothley, K. (2007). Icity: A GIS-CA Modelling Tool for Urban Planning and Decision Making. Environmental Modelling & Software, 22, 761-773. https://doi.org/10.1016/j.envsoft.2006.02.004
[121]
Swannack, T. M. (2008). Growth Models. In S. E. Jørgensen, & B. D. Fath (Eds.), Encyclopedia of Ecology (pp. 1799-1805). Elsevier. https://doi.org/10.1016/b978-008045405-4.00671-6
[122]
Tan, R., Liu, Y., Zhou, K., Jiao, L., & Tang, W. (2015). A Game-Theory Based Agent-Cellular Model for Use in Urban Growth Simulation: A Case Study of the Rapidly Urbanizing Wuhan Area of Central China. Computers, Environment and Urban Systems, 49, 15-29. https://doi.org/10.1016/j.compenvurbsys.2014.09.001
[123]
Ulysses, S. (2017). Complexity Science: The Urban Is a Complex Adaptive System. In D. Iossifova, et al. (Eds.), Defining the Urban (pp. 249-265). Routledge. https://doi.org/10.4324/9781315576282-21
[124]
United Nations, Department (2015). Transforming Our World: The 2030 Agenda for Sustainable Development.
[125]
Verburg, P. H., Schot, P. P., Dijst, M. J., & Veldkamp, A. (2004). Land Use Change Modelling: Current Practice and Research Priorities. GeoJournal, 61, 309-324. https://doi.org/10.1007/s10708-004-4946-y
[126]
Wang, F., & Marceau, D. J. (2013). A Patch‐Based Cellular Automaton for Simulating Land‐Use Changes at Fine Spatial Resolution. Transactions in GIS, 17, 828-846. https://doi.org/10.1111/tgis.12009
[127]
Wang, F., Hasbani, J., Wang, X., & Marceau, D. J. (2011). Identifying Dominant Factors for the Calibration of a Land-Use Cellular Automata Model Using Rough Set Theory. Computers, Environment and Urban Systems, 35, 116-125. https://doi.org/10.1016/j.compenvurbsys.2010.10.003
[128]
Wang, H., Cao, R., & Zeng, W. (2020). Multi-Agent Based and System Dynamics Models Integrated Simulation of Urban Commuting Relevant Carbon Dioxide Emission Reduction Policy in China. Journal of Cleaner Production, 272, Article ID: 122620. https://doi.org/10.1016/j.jclepro.2020.122620
[129]
Wang, R., Derdouri, A., & Murayama, Y. (2018). Spatiotemporal Simulation of Future Land Use/Cover Change Scenarios in the Tokyo Metropolitan Area. Sustainability, 10, Article No. 2056. https://doi.org/10.3390/su10062056
[130]
Wang, R., Murayama, Y., & Morimoto, T. (2021). Scenario Simulation Studies of Urban Development Using Remote Sensing and GIS: Review. Remote Sensing Applications: Society and Environment, 22, Article ID: 100474. https://doi.org/10.1016/j.rsase.2021.100474
[131]
Wang, W., Jiao, L., Dong, T., Xu, Z., & Xu, G. (2019). Simulating Urban Dynamics by Coupling Top-Down and Bottom-Up Strategies. International Journal of Geographical Information Science, 33, 2259-2283. https://doi.org/10.1080/13658816.2019.1647540
[132]
Wegener, M. (1994). Operational Urban Models State of the Art. Journal of the American Planning Association, 60, 17-29. https://doi.org/10.1080/01944369408975547
[133]
White, R., & Engelen, G. (2000). High-Resolution Integrated Modelling of the Spatial Dynamics of Urban and Regional Systems. Computers, Environment and Urban Systems, 24, 383-400. https://doi.org/10.1016/s0198-9715(00)00012-0
[134]
Xu, C., Haase, D., Su, M., Wang, Y., & Pauleit, S. (2020). Assessment of Landscape Changes under Different Urban Dynamics Based on a Multiple-Scenario Modeling Approach. Environment and Planning B: Urban Analytics and City Science, 47, 1361-1379. https://doi.org/10.1177/2399808320910161
[135]
Xu, Q. L. (2015). Agent-Based Modeling and Simulations of Land-Use and Land-Cover Change According to Ant Colony Optimization: A Case Study of the Erhai Lake Basin, China. Natural Hazards, 75, 95-118. https://doi.org/10.1007/s11069-014-1303-4
[136]
Yan, X., Feng, Y., Tong, X., Li, P., Zhou, Y., Wu, P. et al. (2021). Reducing Spatial Autocorrelation in the Dynamic Simulation of Urban Growth Using Eigenvector Spatial Filtering. International Journal of Applied Earth Observation and Geoinformation, 102, Article ID: 102434. https://doi.org/10.1016/j.jag.2021.102434
[137]
Yang, J., Gong, J., Tang, W., & Liu, C. (2020). Patch-Based Cellular Automata Model of Urban Growth Simulation: Integrating Feedback between Quantitative Composition and Spatial Configuration. Computers, Environment and Urban Systems, 79, Article ID: 101402. https://doi.org/10.1016/j.compenvurbsys.2019.101402
[138]
Yi, L., Cao, M., & Zhang, L. (2015). Foundation Item: Under the Auspices of National Natural Science Foundation of China (No. 41101349), Surveying and Mapping Scientific Research Projects of Jiangsu Province. Chinese Geographical Science, 25, 74-84.
[139]
Yu, J., Hagen-Zanker, A., Santitissadeekorn, N., & Hughes, S. (2022). A Data-Driven Framework to Manage Uncertainty Due to Limited Transferability in Urban Growth Models. Computers, Environment and Urban Systems, 98, Article ID: 101892. https://doi.org/10.1016/j.compenvurbsys.2022.101892
[140]
Zhai, Y., Yao, Y., Guan, Q., Liang, X., Li, X., Pan, Y. et al. (2020). Simulating Urban Land Use Change by Integrating a Convolutional Neural Network with Vector-Based Cellular Automata. International Journal of Geographical Information Science, 34, 1475-1499. https://doi.org/10.1080/13658816.2020.1711915
[141]
Zhang, J., Wang, K., Song, G., Zhang, Z., Chen, X., & Yu, Z. (2013). Application of Multi-Agent Models to Urban Expansion in Medium and Small Cities: A Case Study in Fuyang City, Zhejiang Province, China. Chinese Geographical Science, 23, 754-764. https://doi.org/10.1007/s11769-013-0636-3
[142]
Zhang, Y., Kwan, M., & Yang, J. (2023). A User-Friendly Assessment of Six Commonly Used Urban Growth Models. Computers, Environment and Urban Systems, 104, Article ID: 102004. https://doi.org/10.1016/j.compenvurbsys.2023.102004
[143]
Zhou, Y., Zhang, F., Du, Z., Ye, X., & Liu, R. (2017). Integrating Cellular Automata with the Deep Belief Network for Simulating Urban Growth. Sustainability, 9, Article No. 1786. https://doi.org/10.3390/su9101786
[144]
Zhu, J., Sun, Y., Song, S., Yang, J., & Ding, H. (2021). Cellular Automata for Simulating Land-Use Change with a Constrained Irregular Space Representation: A Case Study in Nanjing City, China. Environment and Planning B: Urban Analytics and City Science, 48, 1841-1859. https://doi.org/10.1177/2399808320949889
[145]
Zhuang, H., Liu, X., Yan, Y., Zhang, D., He, J., He, J. et al. (2022). Integrating a Deep Forest Algorithm with Vector‐based Cellular Automata for Urban Land Change Simulation. Transactions in GIS, 26, 2056-2080. https://doi.org/10.1111/tgis.12935
[146]
Zipf, G. K. (1946). The P 1 P 2 D Hypothesis: On the Intercity Movement of Persons. American Sociological Review, 11, 677-686. https://doi.org/10.2307/2087063