|
唾液酸转移酶综述
|
Abstract:
唾液酸在人的细胞识别、分化、迁移和信号识别等重要生理活动中具有重要的作用。在其生理功能的发挥过程中,唾液酸转移酶是不可或缺的重要参与者,其将唾液酸转移到单糖或寡糖的末端,因而唾液酸转移酶被越来越多的研究者所关注。本论文梳理了前期文献研究的主要成果,将从其来源、分类、结构、酶学性质以及催化机理等方面进行综述,以供研究者参考。
Sialyltransferase plays an important role in important physiological activities, such as cell recognition, differentiation, migration, and signal recognition in humans. In the process of its physiological function, sialyltransferase is an indispensable and important participant. It transfers sialic acid to the end of monosaccharides or oligosaccharides, so sialyltransferase is receiving increasing attention from researchers. This paper reviews the main achievements of previous literature research, including their sources, classifications, structures, enzymatic properties, and catalytic mechanisms, for reference by researchers.
[1] | 赵心臣. 唾液酸[J]. 口腔疾病防治, 1998(4): 63-64. |
[2] | Blix, F.G., Gottschalk, A. and Klenk, E. (1957) Proposed Nomenclature in the Field of Neuraminic and Sialic Acids. Nature, 179, 1088-1088. https://doi.org/10.1038/1791088b0 |
[3] | Ni, L., Sun, M., Yu, H., Chokhawala, H., Chen, X. and Fisher, A.J. (2006) Cytidine 5’-Monophosphate (CMP)-Induced Structural Changes in a Multifunctional Sialyltransferase from Pasteurella multocida. Biochemistry, 45, 2139-2148. https://doi.org/10.1021/bi0524013 |
[4] | Schauer, R. (1982) Chemistry, Metabolism, and Biological Functions of Sialic Acids. Advances in Carbohydrate Chemistry and Biochemistry, 40, 131-234. https://doi.org/10.1016/s0065-2318(08)60109-2 |
[5] | Rillahan, C.D., Antonopoulos, A., Lefort, C.T., Sonon, R., Azadi, P., Ley, K., et al. (2012) Global Metabolic Inhibitors of Sialyl-and Fucosyltransferases Remodel the Glycome. Nature Chemical Biology, 8, 661-668. https://doi.org/10.1038/nchembio.999 |
[6] | Yamamoto, T., Ichikawa, M. and Takakura, Y. (2008) Conserved Amino Acid Sequences in the Bacterial Sialyltransferases Belonging to Glycosyltransferase Family 80. Biochemical and Biophysical Research Communications, 365, 340-343. https://doi.org/10.1016/j.bbrc.2007.10.201 |
[7] | Vijay, I.K. and Troy, F.A. (1975) Properties of Membrane-Associated Sialyltransferase of Escherichia Coli. Journal of Biological Chemistry, 250, 164-170. https://doi.org/10.1016/s0021-9258(19)41995-9 |
[8] | Takakura, Y., Tsukamoto, H. and Yamamoto, T. (2007) Molecular Cloning, Expression and Properties of an α/β-Galactoside α2,3-Sialyltransferase from Vibrio sp. JT-FAJ-16. Journal of Biochemistry, 142, 403-412. https://doi.org/10.1093/jb/mvm147 |
[9] | Cheng, J., Yu, H., Lau, K., Huang, S., Chokhawala, H.A., Li, Y., et al. (2008) Multifunctionality of Campylobacter jejuni Sialyltransferase CstII: Characterization of GD3/GT3 Oligosaccharide Synthase, GD3 Oligosaccharide Sialidase, and Trans-Sialidase Activities. Glycobiology, 18, 686-697. https://doi.org/10.1093/glycob/cwn047 |
[10] | Breton, C., Šnajdrová, L., Jeanneau, C., Koča, J. and Imberty, A. (2005) Structures and Mechanisms of Glycosyltransferases. Glycobiology, 16, 29R-37R. https://doi.org/10.1093/glycob/cwj016 |
[11] | Audry, M., Jeanneau, C., Imberty, A., Harduin-Lepers, A., Delannoy, P. and Breton, C. (2010) Current Trends in the Structure-Activity Relationships of Sialyltransferases. Glycobiology, 21, 716-726. https://doi.org/10.1093/glycob/cwq189 |
[12] | Kakuta, Y., Okino, N., Kajiwara, H., Ichikawa, M., Takakura, Y., Ito, M., et al. (2007) Crystal Structure of Vibrionaceae Photobacterium sp. JT-ISH-224 2,6-Sialyltransferase in a Ternary Complex with Donor Product CMP and Acceptor Substrate Lactose: Catalytic Mechanism and Substrate Recognition. Glycobiology, 18, 66-73. https://doi.org/10.1093/glycob/cwm119 |
[13] | Lairson, L.L., Henrissat, B., Davies, G.J. and Withers, S.G. (2008) Glycosyltransferases: Structures, Functions, and Mechanisms. Annual Review of Biochemistry, 77, 521-555. https://doi.org/10.1146/annurev.biochem.76.061005.092322 |
[14] | Krissinel, E. and Henrick, K. (2007) Inference of Macromolecular Assemblies from Crystalline State. Journal of Molecular Biology, 372, 774-797. https://doi.org/10.1016/j.jmb.2007.05.022 |
[15] | Qu, C., Liljas, L., Opalka, N., Brugidou, C., Yeager, M., Beachy, R.N., et al. (2000) 3D Domain Swapping Modulates the Stability of Members of an Icosahedral Virus Group. Structure, 8, 1095-1103. https://doi.org/10.1016/s0969-2126(00)00508-6 |
[16] | Chiu, C.P.C., Watts, A.G., Lairson, L.L., Gilbert, M., Lim, D., Wakarchuk, W.W., et al. (2004) Structural Analysis of the Sialyltransferase CstII from Campylobacter jejuni in Complex with a Substrate Analog. Nature Structural & Molecular Biology, 11, 163-170. https://doi.org/10.1038/nsmb720 |
[17] | Breton, C., Heissigerová, H., Jeanneau, C., Moravcová, J. and Imberty, A. (2002) Comparative Aspects of Glycosyltransferases. Biochemical Society Symposia, 69, 23-32. https://doi.org/10.1042/bss0690023 |
[18] | Mulichak, A.M., Losey, H.C., Walsh, C.T. and Garavito, R.M. (2001) Structure of the UDP-Glucosyltransferase GtfB That Modifies the Heptapeptide Aglycone in the Biosynthesis of Vancomycin Group Antibiotics. Structure, 9, 547-557. https://doi.org/10.1016/s0969-2126(01)00616-5 |
[19] | Audry, M., Jeanneau, C., Imberty, A., Harduin-Lepers, A., Delannoy, P. and Breton, C. (2010) Current Trends in the Structure-Activity Relationships of Sialyltransferases. Glycobiology, 21, 716-726. https://doi.org/10.1093/glycob/cwq189 |
[20] | Cheng, J., Huang, S., Yu, H., Li, Y., Lau, K. and Chen, X. (2009) Trans-Sialidase Activity of Photobacterium damsela α2,6-Sialyltransferase and Its Application in the Synthesis of Sialosides. Glycobiology, 20, 260-268. https://doi.org/10.1093/glycob/cwp172 |
[21] | Willis, L.M., Gilbert, M., Karwaski, M.-F., Blanchard, M.-C. and Wakarchuk, W.W. (2007) Characterization of the α-2,8-Polysialyltransferase from Neisseria meningitidis with Synthetic Acceptors, and the Development of a Self-Priming Polysialyltransferase Fusion Enzyme. Glycobiology, 18, 177-186. https://doi.org/10.1093/glycob/cwm126 |
[22] | Lairson, L.L. and Withers, S.G. (2004) Mechanistic Analogies Amongst Carbohydrate Modifying Enzymes. Chemical Communications, 2004, 2243-2248. https://doi.org/10.1039/b406490a |
[23] | Kakuta, Y., Okino, N., Kajiwara, H., Ichikawa, M., Takakura, Y., Ito, M., et al. (2007) Crystal Structure of Vibrionaceae photobacterium sp. JT-ISH-224 α2,6-Sialyltransferase in a Ternary Complex with Donor Product CMP and Acceptor Substrate Lactose: Catalytic Mechanism and Substrate Recognition. Glycobiology, 18, 66-73. https://doi.org/10.1093/glycob/cwm119 |
[24] | Pedersen, L.C., Tsuchida, K., Kitagawa, H., Sugahara, K., Darden, T.A. and Negishi, M. (2000) Heparan/Chondroitin Sulfate Biosynthesis: Structure and Mechanism of Human Glucuronyltransferase I. Journal of Biological Chemistry, 275, 34580-34585. https://doi.org/10.1074/jbc.m007399200 |
[25] | Choi, Y.H., Kim, J.H., Park, J.H., Lee, N., Kim, D., Jang, K., et al. (2013) Protein Engineering of α2,3/2,6-Sialyltransferase to Improve the Yield and Productivity of in vitro Sialyllactose Synthesis. Glycobiology, 24, 159-169. https://doi.org/10.1093/glycob/cwt092 |
[26] | Schauer, R. (2009) Sialic Acids as Regulators of Molecular and Cellular Interactions. Current Opinion in Structural Biology, 19, 507-514. https://doi.org/10.1016/j.sbi.2009.06.003 |
[27] | Varki, A. and Gagneux, P. (2012) Multifarious Roles of Sialic Acids in Immunity. Annals of the New York Academy of Sciences, 1253, 16-36. https://doi.org/10.1111/j.1749-6632.2012.06517.x |
[28] | Varki, A. (2008) Sialic Acids in Human Health and Disease. Trends in Molecular Medicine, 14, 351-360. https://doi.org/10.1016/j.molmed.2008.06.002 |
[29] | Crespo, H.J., Lau, J.T.Y. and Videira, P.A. (2013) Dendritic Cells: A Spot on Sialic Acid. Frontiers in Immunology, 4, Article 491. https://doi.org/10.3389/fimmu.2013.00491 |
[30] | Swindall, A.F. and Bellis, S.L. (2011) Sialylation of the Fas Death Receptor by ST6Gal-I Provides Protection against Fas-Mediated Apoptosis in Colon Carcinoma Cells. Journal of Biological Chemistry, 286, 22982-22990. https://doi.org/10.1074/jbc.m110.211375 |
[31] | Cui, H., Lin, Y., Yue, L., Zhao, X. and Liu, J. (2011) Differential Expression of the α2,3-Sialic Acid Residues in Breast Cancer Is Associated with Metastatic Potential. Oncology Reports, 25, 1365-1371. https://doi.org/10.3892/or.2011.1192 |
[32] | Lee, M., Lee, H., Bae, S. and Lee, Y. (2008) Protein Sialylation by Sialyltransferase Involves Radiation Resistance. Molecular Cancer Research, 6, 1316-1325. https://doi.org/10.1158/1541-7786.mcr-07-2209 |
[33] | Park, J., Yi, J.Y., Jin, Y.B., Lee, Y., Lee, J., Lee, Y., et al. (2012) Sialylation of Epidermal Growth Factor Receptor Regulates Receptor Activity and Chemosensitivity to Gefitinib in Colon Cancer Cells. Biochemical Pharmacology, 83, 849-857. https://doi.org/10.1016/j.bcp.2012.01.007 |
[34] | Sakuma, K., Aoki, M. and Kannagi, R. (2012) Transcription Factors c-Myc and CDX2 Mediate E-Selectin Ligand Expression in Colon Cancer Cells Undergoing EGF/bFGF-Induced Epithelial-Mesenchymal Transition. Proceedings of the National Academy of Sciences, 109, 7776-7781. https://doi.org/10.1073/pnas.1111135109 |
[35] | Maupin, K.A., Sinha, A., Eugster, E., Miller, J., Ross, J., Paulino, V., et al. (2010) Glycogene Expression Alterations Associated with Pancreatic Cancer Epithelial-Mesenchymal Transition in Complementary Model Systems. PLOS ONE, 5, e13002. https://doi.org/10.1371/journal.pone.0013002 |
[36] | Dalziel, M., Dall’Olio, F., Mungul, A., Piller, V. and Piller, F. (2004) Ras Oncogene Induces β‐Galactoside α2,6‐Sialyltransferase (ST6Gal I) via a RalGEF‐Mediated Signal to Its Housekeeping Promoter. European Journal of Biochemistry, 271, 3623-3634. https://doi.org/10.1111/j.1432-1033.2004.04284.x |
[37] | Wang, X., Zhang, L. and Ye, X. (2002) Recent Development in the Design of Sialyltransferase Inhibitors. Medicinal Research Reviews, 23, 32-47. https://doi.org/10.1002/med.10030 |
[38] | Jung, K., Schwörer, R. and Schmidt, R.R. (2003) Sialyltransferase Inhibitors. Trends in Glycoscience and Glycotechnology, 15, 275-289. https://doi.org/10.4052/tigg.15.275 |
[39] | Wang, L., Liu, Y., Wu, L. and Sun, X. (2016) Sialyltransferase Inhibition and Recent Advances. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1864, 143-153. https://doi.org/10.1016/j.bbapap.2015.07.007 |