Every person, in every country and on every continent, will be affected in one way or another by climate change. A climate cataclysm is looming on the horizon due to greenhouse gas emissions. This explains a strong demand for air conditioning in the years to come, hence the need for good thermal insulation at a lower cost. However, a policy of prevention, adaptation, and resilience is necessary for the protection of the environment in the future. This work aims to respond to the United Nations SDGs 7, 11 and 13. This paper presents the results of thermomechanical characterizations of the Typha additive (0%, 5%, 10%, 15%, 20%) in laterite matrices. First, we carried out a thermal characterization using the asymmetric hot plane method, which led to thermal conductivity and effusivity in different proportions. Next, mechanical tests were carried out to determine the traction and compression of each material with a matest press. Those which made it possible to obtain results according to the percentage for the thermal tests: a conductivity varying between 0.7178 W/m·K to 0.0597 W/m·K and an effusivity varying between 942.5392 J/m2·K·s1/2 at 287.0855 J/m2·K·s1/2 and for mechanical tests: traction varying between 0.035 MPa to 0.034 MPa and compression varying between 0.1115 MPa to 0.0805 MPa for the different samples. The exploitation of the results allowed us to study the conductivity, effusivity, traction, and compression as a function of their densities.
References
[1]
Joffroy, T., Misse, A., Celaire, R. and Rakotomalala, L. (2019) Bioclimatic Architecture and Energy Efficiency of Buildings in Senegal. Hal Open Science.
[2]
A.E.M.E (Economic Agency for Energy Management) (2021) Final Report “Senegal’s Energy Management Strategy (SMES)”. 130-131. https://rise.esmap.org/
[3]
Rapport du 6e cycle du GIEC sur le climat, 20 mars. http://unfccc.int/portal_francophone/items/3072.php
[4]
Bourouga, B., Goizet, V. and Bardon, J. (2000) Les aspects théoriques régissant l’instrumentation d’un capteur thermique pariétal à faible inertie. InternationalJournalofThermalSciences, 39, 96-109. https://doi.org/10.1016/s1290-0729(00)00192-6
[5]
Sanjay, M.R. and Siengchin, S. (2019) Lightweight Natural Fiber Composites. JournalofAppliedAgriculturalScienceandTechnology, 3, 178. https://doi.org/10.32530/jaast.v3i2.108
[6]
Ministry of Environment and Sustainable Development, Final Report (2014) Reference Situation of Biodiversity in Typha Settlement Areas, July 1014, 10-11. http://www.vegetal-e.com/
[7]
OMVS (Organization for the Development of the Senegal River) (2011) State of the Environment of the Senegal River Basin 2006-2010. https://cda-omvs.org/
[8]
Castellanet, C., Diallo, S., Toure, L. et al. (2019) Status Report and Review of Typha Control Methods. https://cda-omvs.org/15051-2/
[9]
Diaw, I., Faye, M., Hans, S., Sallet, F. and Sambou, V. (2022) Valorization of the Recovered Lime in Cement-Typha Concretes: Thermal and Mechanical Behavior. In: Mambo, A.D., Gueye, A. and Bassioni, G., Eds., Innovations and Interdisciplinary Solutions for Underserved Areas, Springer, 267-276. https://doi.org/10.1007/978-3-031-23116-2_23
[10]
Diatta, M.T., Gaye, S., Thiam, A. and Azilinon, D. (2011) Determination of the Thermo-Physical and Mechanical Properties of Typha Australis. In Proceedings of the SFT Congress, Per-pignan, France, 24-27 May 2011.
[11]
Dieye, Y., Sambou, V., Faye, M., Thiam, A., Adj, M. and Azilinon, D. (2017) Thermo-mechanical Characterization of a Building Material Based on Typha Australis. JournalofBuildingEngineering, 9, 142-146. https://doi.org/10.1016/j.jobe.2016.12.007
[12]
Agoudjil, B., Benchabane, A., Boudenne, A., Ibos, L. and Fois, M. (2011) Renewable Materials to Reduce Building Heat Loss: Characterization of Date Palm Wood. Energy and Buildings, 43, 491-497.
[13]
Meukam, P., Noumowe, A., Jannot, Y. and Duval, R. (2003) Caractérisation thermo-physique et mécanique de briques de terre stabilisées en vue de l’isolation thermique de bâtiment. MaterialsandStructures, 36, 453-460. https://doi.org/10.1007/bf02481525
[14]
Houngbeme, C., Houngan, A., Djossou, A. and Vianou, A. (2020) Influence of Water Content on the Thermophysical Properties of Ptero-Carpus and afzéLia Woods. Société Française de Thermique. https://doi.org/10.25855/SFT2020-164
[15]
Damfeu, J.C., Meukam, P. and Jannot, Y. (2016) Modeling and Measuring of the Thermal Properties of Insulating Vegetable Fibers by the Asymmetrical Hot Plate Method and the Radial Flux Method: Kapok, Coconut, Groundnut Shell Fiber and Rattan. ThermochimicaActa, 630, 64-77. https://doi.org/10.1016/j.tca.2016.02.007
[16]
Osseni, S.O.G., Apovo, B.D., Ahouannou, C., Sanya, E.A. and Jannot, Y. (2016) Thermal Characterization of Cement Mortars Doped with Coconut Fibers by the Asymmetric Hot Plane Method with a Temperature Measurement. Afrique Science, 12, 119-129.
[17]
Ghabo, A. (2022) Formulation and Thermomechanical Characterization of Concretes Reinforced with Fibers from the Baobab Trunk (Adansoniadigitata L.) for Housing. Master’s Thesis, Cheikh Anta Diop University of Dakar.
[18]
Belhaneche-Bensemra, N. (2002) Étude des propriétés des mélanges pebd régénéré/-pebd viergeStudy of the properties of recycled LDPE/virgin LDPE blends. Annales de Chimie Science des Matériaux, 27, 93-105. https://doi.org/10.1016/s0151-9107(02)80022-8
[19]
Bentchikou, M., Hanini, S., Silhadi, K. and Guidoum, A. (2007) Élaboration et étude d’un mortier composite à matrice minérale et fibres cellulosiques: Application à l’isolation thermique en bâtiment. CanadianJournalofCivilEngineering, 34, 37-45. https://doi.org/10.1139/l06-149
[20]
Joseph, P., Joseph, S., Mozer, C., Theodore, T. and Wilfried, N.B. (2020) Improvement of the Thermal Properties of Cement Mortars by Adding Banana Pseudo-Trunkfibres. OpenJournalofCivilEngineering, 10, 175-186. https://doi.org/10.4236/ojce.2020.103015
[21]
Kabore, A. and Ouellet-Plamondon, C.M. (2024) Improved Insulation with Fibres in Heavy Cob for Building Walls. IndustrialCropsandProducts, 215, Article ID: 118626. https://doi.org/10.1016/j.indcrop.2024.118626
[22]
Brouard, Y., Belayachi, N., Hoxha, D., Ranganathan, N. and Méo, S. (2018) Mechanical and Hygrothermal Behavior of Clay-Sunflower (Helianthusannuus) and Rape Straw (Brassica napus) Plaster Bio-Composites for Building Insulation. ConstructionandBuildingMaterials, 161, 196-207. https://doi.org/10.1016/j.conbuildmat.2017.11.140
[23]
Collet, F. and Pretot, S. (2014) Thermal Conductivity of Hemp Concretes: Variation with Formulation, Density and Water Content. ConstructionandBuildingMaterials, 65, 612-619. https://doi.org/10.1016/j.conbuildmat.2014.05.039
[24]
Affan, H., El Haddaji, B., Ajouguim, S. and Khadraoui, F. (2024) A Review—Durability, Mechanical and Hygrothermal Behavior of Building Materials Incorporating Biomass. Eng, 5, 992-1027. https://doi.org/10.3390/eng5020055
[25]
Laborel-Préneron, A., Aubert, J.E., Magniont, C. and Bertron, A. (2015) Influence of Straw Content on the Mechanical and Thermal Properties of Bio-Based Earth Composites. Academic Journal of Civil Engineering, 33, 517-522.
[26]
Cristaldi, G., Latteri, A., Recca, G. and Cicala, G. (2010) Composites Based on Natural Fibre Fabrics. Woven Fabric Engineering, 17, 317-342.