Diarrheal diseases represent a significant and pervasive health challenge for humanity. The aetiology of diarrheal diseases is typically associated with the presence of enteropathogens, including viruses, bacteria and parasites. The implementation of preventive measures, including the maintenance of good food hygiene, effective water sanitation, and the development of rotavirus vaccines, has resulted in a notable reduction in the prevalence of the disease. However, the emergence of bacterial multidrug resistance due to the past or present inappropriate use of antibiotics has rendered bacterial infections a significant challenge. The objective of this review is threefold: firstly, to provide an overview of diarrheal diseases associated with bacteria; secondly, to offer a concise analysis of bacterial multidrug resistance on a global scale; and thirdly, to present the potential of filamentous fungi as an alternative solution to the challenge posed by multidrug-resistant strains. Campylobacter spp. is the most dangerous bacteria, followed by Shigella spp. and Vibriocholerae in all age groups combined. However, Shigella spp. was the deadliest in children under five years of age and, together with E. coli, are the most antibiotic-resistant bacteria. With their highly developed secondary metabolism, fungi are a reservoir of natural bioactive compounds.
References
[1]
Lee, H. and Yoon, Y. (2021) Etiological Agents Implicated in Foodborne Illness World Wide. Food Science of Animal Resources, 41, 1-7. https://doi.org/10.5851/kosfa.2020.e75
[2]
World Health Organization (2020) World Health Statistics 2020. https://iris.who.int/bitstream/handle/10665/332070/9789240005105-eng.pdf?sequence=1&isAllowed=y
[3]
Mcmahan, Z.H. and Dupont, H.L. (2007) Review Article: The History of Acute Infectious Diarrhoea Management—From Poorly Focused Empiricism to Fluid Therapy and Modern Pharmacotherapy. AlimentaryPharmacology&Therapeutics, 25, 759-769. https://doi.org/10.1111/j.1365-2036.2007.03261.x
[4]
Farthing, M., Salam, M.A., Lindberg, G., Dite, P., Khalif, I., Salazar-Lindo, E., et al. (2013) Acute Diarrhea in Adults and Children. JournalofClinicalGastroenterology, 47, 12-20. https://doi.org/10.1097/mcg.0b013e31826df662
[5]
Troeger, C., Forouzanfar, M., Rao, P.C., Khalil, I., Brown, A., Reiner, R.C., et al. (2017) Estimates of Global, Regional, and National Morbidity, Mortality, and Aetiologies of Diarrhoeal Diseases: A Systematic Analysis for the Global Burden of Disease Study 2015. TheLancetInfectiousDiseases, 17, 909-948. https://doi.org/10.1016/s1473-3099(17)30276-1
[6]
Wolde, D., Tilahun, G.A., Kotiso, K.S., Medhin, G. and Eguale, T. (2022) The Burden of Diarrheal Diseases and Its Associated Factors among Under-Five Children in Welkite Town: A Community Based Cross-Sectional Study. InternationalJournalofPublicHealth, 67, Article 1604960. https://doi.org/10.3389/ijph.2022.1604960
[7]
Mokomane, M., Kasvosve, I., Melo, E.d., Pernica, J.M. and Goldfarb, D.M. (2017) The Global Problem of Childhood Diarrhoeal Diseases: Emerging Strategies in Prevention and Management. TherapeuticAdvancesinInfectiousDisease, 5, 29-43. https://doi.org/10.1177/2049936117744429
[8]
Jonesteller, C.L., Burnett, E., Yen, C., Tate, J.E. and Parashar, U.D. (2017) Effectiveness of Rotavirus Vaccination: A Systematic Review of the First Decade of Global Postlicensure Data, 2006-2016. ClinicalInfectiousDiseases, 65, 840-850. https://doi.org/10.1093/cid/cix369
[9]
Davies, J. and Davies, D. (2010) Origins and Evolution of Antibiotic Resistance. MicrobiologyandMolecularBiologyReviews, 74, 417-433. https://doi.org/10.1128/mmbr.00016-10
[10]
Hitch, G. and Fleming, N. (2018) Antibiotic Resistance in Travellers’ Diarrhoeal Disease, an External Perspective. JournalofTravelMedicine, 25, S27-S37. https://doi.org/10.1093/jtm/tay014
[11]
Christaki, E., Marcou, M. and Tofarides, A. (2019) Antimicrobial Resistance in Bacteria: Mechanisms, Evolution, and Persistence. JournalofMolecularEvolution, 88, 26-40. https://doi.org/10.1007/s00239-019-09914-3
[12]
Varela, M.F., Stephen, J., Lekshmi, M., Ojha, M., Wenzel, N., Sanford, L.M., et al. (2021) Bacterial Resistance to Antimicrobial Agents. Antibiotics, 10, Article 593. https://doi.org/10.3390/antibiotics10050593
[13]
Bills, G.F. and Gloer, J.B. (2017) Biologically Active Secondary Metabolites from the Fungi. In: Heitman, J., Howlett, B.J., Crous, P.W., Stukenbrock, E.H., James, T.Y. and Gow, N.A.R., Eds., The Fungal Kingdom, ASM Press, 1087-1119. https://doi.org/10.1128/9781555819583.ch54
[14]
Netzker, T., Flak, M., Krespach, M.K., Stroe, M.C., Weber, J., Schroeckh, V., et al. (2018) Microbial Interactions Trigger the Production of Antibiotics. Current Opinion in Microbiology, 45, 117-123. https://doi.org/10.1016/j.mib.2018.04.002
[15]
Cueto, M., Jensen, P.R., Kauffman, C., Fenical, W., Lobkovsky, E. and Clardy, J. (2001) Pestalone, a New Antibiotic Produced by a Marine Fungus in Response to Bacterial Challenge. Journal of Natural Products, 64, 1444-1446. https://doi.org/10.1021/np0102713
[16]
Oh, D., Kauffman, C.A., Jensen, P.R. and Fenical, W. (2007) Induced Production of Emericellamides a and B from the Marine-Derived Fungus Emericella sp. in Competing Co-Culture. Journal of Natural Products, 70, 515-520. https://doi.org/10.1021/np060381f
[17]
Xu, S., Li, M., Hu, Z., Shao, Y., Ying, J. and Zhang, H. (2023) The Potential Use of Fungal Co-Culture Strategy for Discovery of New Secondary Metabolites. Microorganisms, 11, Article 464. https://doi.org/10.3390/microorganisms11020464
[18]
Baby, J. and Thomas, T. (2021) A Review on Different Approaches to Isolate Antibiotic Compounds from Fungi. Italian Journal of Mycology, 50, 99-116. https://doi.org/10.6092/issn.2531-7342/12700
[19]
Troeger, C., Blacker, B.F., Khalil, I.A., Rao, P.C., Cao, S., Zimsen, S.R., et al. (2018) Estimates of the Global, Regional, and National Morbidity, Mortality, and Aetiologies of Diarrhoea in 195 Countries: A Systematic Analysis for the Global Burden of Disease Study 2016. The Lancet Infectious Diseases, 18, 1211-1228. https://doi.org/10.1016/s1473-3099(18)30362-1
[20]
Fleckenstein, J.M., Matthew Kuhlmann, F. and Sheikh, A. (2021) Acute Bacterial Gastroenteritis. Gastroenterology Clinics of North America, 50, 283-304. https://doi.org/10.1016/j.gtc.2021.02.002
[21]
Zaidi, M.B. and Estrada-García, T. (2014) Shigella: A Highly Virulent and Elusive Pathogen. Current Tropical MedicineReports, 1, 81-87. https://doi.org/10.1007/s40475-014-0019-6
[22]
Anderson, J.D., Bagamian, K.H., Muhib, F., Amaya, M.P., Laytner, L.A., Wierzba, T., et al. (2019) Burden of Enterotoxigenic Escherichia Coli and Shigella Non-Fatal Diarrhoeal Infections in 79 Low-Income and Lower Middle-Income Countries: A Modelling Analysis. TheLancetGlobalHealth, 7, e321-e330. https://doi.org/10.1016/s2214-109x(18)30483-2
[23]
Cheng, R.A., Eade, C.R. and Wiedmann, M. (2019) Embracing Diversity: Differences in Virulence Mechanisms, Disease Severity, and Host Adaptations Contribute to the Success of Nontyphoidal Salmonella as a Foodborne Pathogen. FrontiersinMicrobiology, 10, Article 1368. https://doi.org/10.3389/fmicb.2019.01368
[24]
Mandomando, I., Macete, E., Sigaúque, B., Morais, L., Quintó, L., Sacarlal, J., et al. (2009) Invasive Non-Typhoidal Salmonella in Mozambican Children. TropicalMedicine&InternationalHealth, 14, 1467-1474. https://doi.org/10.1111/j.1365-3156.2009.02399.x
[25]
García-Sánchez, L., Melero, B. and Rovira, J. (2018) Campylobacter in the Food Chain. AdvancesinFoodandNutritionResearch, 86, 215-252. https://doi.org/10.1016/bs.afnr.2018.04.005
[26]
Lackner, J., Schlichting, D., Müller-Graf, C. and Greiner, M. (2017) Systematischer Review Zur Krankheitslast Durch Campylobacter spp. DasGesundheitswesen, 81, e110-e120. https://doi.org/10.1055/s-0043-121885
[27]
Belina, D., Gobena, T., Kebede, A., Chimdessa, M., Hailu, Y. and Hald, T. (2023) Occurrence of Diarrheagenic Pathogens and Their Coinfection Profiles in Diarrheic Under Five Children and Tracked Human Contacts in Urban and Rural Settings of Eastern Ethiopia. Microbiology Insights, 16. https://doi.org/10.1177/11786361231196527
[28]
Kotloff, K.L., Blackwelder, W.C., Nasrin, D., Nataro, J.P., Farag, T.H., van Eijk, A., et al. (2012) The Global Enteric Multicenter Study (GEMS) of Diarrheal Disease in Infants and Young Children in Developing Countries: Epidemiologic and Clinical Methods of the Case/Control Study. ClinicalInfectiousDiseases, 55, S232-S245. https://doi.org/10.1093/cid/cis753
[29]
Kotloff, K.L., Nasrin, D., Blackwelder, W.C., Wu, Y., Farag, T., Panchalingham, S., et al. (2019) The Incidence, Aetiology, and Adverse Clinical Consequences of Less Severe Diarrhoeal Episodes among Infants and Children Residing in Low-Income and Middle-Income Countries: A 12-Month Case-Control Study as a Follow-On to the Global Enteric Multicenter Study (gems). TheLancetGlobalHealth, 7, e568-e584. https://doi.org/10.1016/s2214-109x(19)30076-2
[30]
Levine, M.M., Nasrin, D., Acácio, S., Bassat, Q., Powell, H., Tennant, S.M., et al. (2020) Diarrhoeal Disease and Subsequent Risk of Death in Infants and Children Residing in Low-Income and Middle-Income Countries: Analysis of the GEMS Case-Control Study and 12-Month GEMS-1A Follow-On Study. TheLancetGlobalHealth, 8, e204-e214. https://doi.org/10.1016/s2214-109x(19)30541-8
[31]
Cassini, A., Högberg, L.D., Plachouras, D., Quattrocchi, A., Hoxha, A., Simonsen, G.S., et al. (2019) Attributable Deaths and Disability-Adjusted Life-Years Caused by Infections with Antibiotic-Resistant Bacteria in the EU and the European Economic Area in 2015: A Population-Level Modelling Analysis. TheLancetInfectiousDiseases, 19, 56-66. https://doi.org/10.1016/s1473-3099(18)30605-4
[32]
Wolf, J., Hubbard, S., Brauer, M., Ambelu, A., Arnold, B.F., Bain, R., et al. (2022) Effectiveness of Interventions to Improve Drinking Water, Sanitation, and Handwashing with Soap on Risk of Diarrhoeal Disease in Children in Low-Income and Middle-Income Settings: A Systematic Review and Meta-analysis. TheLancet, 400, 48-59. https://doi.org/10.1016/s0140-6736(22)00937-0
[33]
Santosham, M., Chandran, A., Fitzwater, S., Fischer-Walker, C., Baqui, A.H. and Black, R. (2010) Progress and Barriers for the Control of Diarrhoeal Disease. The Lancet, 376, 63-67. https://doi.org/10.1016/s0140-6736(10)60356-x
[34]
Ugboko, H.U., Nwinyi, O.C., Oranusi, S.U. and Oyewale, J.O. (2020) Childhood Diarrhoeal Diseases in Developing Countries. Heliyon, 6, e03690. https://doi.org/10.1016/j.heliyon.2020.e03690
[35]
Bruzzese, E., Giannattasio, A. and Guarino, A. (2018) Antibiotic Treatment of Acute Gastroenteritis in Children. F1000Research, 7, 193. https://doi.org/10.12688/f1000research.12328.1
[36]
Dereje, B., Yibabie, S., Keno, Z. and Megersa, A. (2023) Antibiotic Utilization Pattern in Treatment of Acute Diarrheal Diseases: The Case of Hiwot Fana Specialized University Hospital, Harar, Ethiopia. JournalofPharmaceuticalPolicyandPractice, 16, Article 62. https://doi.org/10.1186/s40545-023-00568-7
[37]
Baker, S. and The, H.C. (2018) Recent Insights into Shigella: A Major Contributor to the Global Diarrhoeal Disease Burden. CurrentOpinioninInfectiousDiseases, 31, 449-454. https://doi.org/10.1097/qco.0000000000000475
[38]
Silva, J., Leite, D., Fernandes, M., Mena, C., Gibbs, P.A. and Teixeira, P. (2011) Campylobacter spp. as a Foodborne Pathogen: A Review. FrontiersinMicrobiology, 2, Article 200. https://doi.org/10.3389/fmicb.2011.00200
[39]
Eng, S., Pusparajah, P., Ab Mutalib, N., Ser, H., Chan, K. and Lee, L. (2015) Salmonella: A Review on Pathogenesis, Epidemiology and Antibiotic Resistance. FrontiersinLifeScience, 8, 284-293. https://doi.org/10.1080/21553769.2015.1051243
[40]
Manetu, W.M., M’masi, S. and Recha, C.W. (2021) Diarrhea Disease among Children under 5 Years of Age: A Global Systematic Review. OpenJournalofEpidemiology, 11, 207-221. https://doi.org/10.4236/ojepi.2021.113018
[41]
Koluman, A. and Dikici, A. (2012) Antimicrobial Resistance of Emerging Foodborne Pathogens: Status Quo and Global Trends. CriticalReviewsinMicrobiology, 39, 57-69. https://doi.org/10.3109/1040841x.2012.691458
[42]
Fashae, K., Ogunsola, F., Aarestrup, F.M. and Hendriksen, R.S. (2010) Antimicrobial Susceptibility and Serovars of Salmonella from Chickens and Humans in Ibadan, Nigeria. TheJournalofInfectioninDevelopingCountries, 4, 484-494. https://doi.org/10.3855/jidc.909
[43]
Lunguya, O., Lejon, V., Phoba, M., Bertrand, S., Vanhoof, R., Glupczynski, Y., et al. (2013) Antimicrobial Resistance in Invasive Non-Typhoid Salmonella from the Democratic Republic of the Congo: Emergence of Decreased Fluoroquinolone Susceptibility and Extended-Spectrum Beta Lactamases. PLOSNeglectedTropicalDiseases, 7, e2103. https://doi.org/10.1371/journal.pntd.0002103
[44]
Maltha, J., Guiraud, I., Kaboré, B., Lompo, P., Ley, B., Bottieau, E., et al. (2014) Frequency of Severe Malaria and Invasive Bacterial Infections among Children Admitted to a Rural Hospital in Burkina Faso. PLOSONE, 9, e89103. https://doi.org/10.1371/journal.pone.0089103
[45]
Kalonji, L.M., Post, A., Phoba, M., Falay, D., Ngbonda, D., Muyembe, J., et al. (2015) Invasive Salmonella Infections at Multiple Surveillance Sites in the Democratic Republic of the Congo, 2011-2014. ClinicalInfectiousDiseases, 61, S346-S353. https://doi.org/10.1093/cid/civ713
[46]
Eibach, D., Al-Emran, H.M., Dekker, D.M., Krumkamp, R., Adu-Sarkodie, Y., Cruz Espinoza, L.M., et al. (2016) The Emergence of Reduced Ciprofloxacin Susceptibility In Salmonellaenterica Causing Bloodstream Infections in Rural Ghana. ClinicalInfectiousDiseases, 62, S32-S36. https://doi.org/10.1093/cid/civ757
[47]
Hlashwayo, D.F., Noormahomed, E.V., Bahule, L., Benson, C.A., Schooley, R.T., Sigaúque, B., et al. (2023) Susceptibility Antibiotic Screening Reveals High Rates of Multidrug Resistance of Salmonella, Shigella and Campylobacter in HIV Infected and Uninfected Patients from Mozambique. BMCInfectiousDiseases, 23, Article No. 255. https://doi.org/10.1186/s12879-023-08219-7
[48]
Lefèvre, S., Njamkepo, E., Feldman, S., Ruckly, C., Carle, I., Lejay-Collin, M., et al. (2023) Rapid Emergence of Extensively Drug-Resistant Shigellasonnei in France. NatureCommunications, 14, Article No. 462. https://doi.org/10.1038/s41467-023-36222-8
[49]
Sharif, N., Ahmed, S.N., Khandaker, S., Monifa, N.H., Abusharha, A., Vargas, D.L.R., et al. (2023) Multidrug Resistance Pattern and Molecular Epidemiology of Pathogens among Children with Diarrhea in Bangladesh, 2019-2021. ScientificReports, 13, Article No. 13975. https://doi.org/10.1038/s41598-023-41174-6
[50]
Akinduti, A.P., Ayodele, O., Motayo, B.O., Obafemi, Y.D., Isibor, P.O. and Aboderin, O.W. (2022) Cluster Analysis and Geospatial Mapping of Antibiotic Resistant Escherichiacoli O157 in Southwest Nigerian Communities. OneHealth, 15, Article ID: 100447. https://doi.org/10.1016/j.onehlt.2022.100447
[51]
Iwu, C.D., Nontongana, N., Iwu-Jaja, C.J., Anyanwu, B.O., du Plessis, E., Korsten, L., et al. (2023) Spatial Diarrheal Disease Risks and Antibiogram Diversity of Diarrheagenic Escherichiacoli in Selected Access Points of the Buffalo River, South Africa. PLOSONE, 18, e0288809. https://doi.org/10.1371/journal.pone.0288809
[52]
Oneko, M., Kariuki, S., Muturi-Kioi, V., Otieno, K., Otieno, V.O., Williamson, J.M., et al. (2015) Emergence of Community-Acquired, Multidrug-Resistant Invasive Nontyphoidal Salmonella Disease in Rural Western Kenya, 2009-2013. ClinicalInfectiousDiseases, 61, S310-S316. https://doi.org/10.1093/cid/civ674
[53]
Lima, B., Sanchez, M., Agüero, M.B., Tapia, A., Palermo, J.A. and Feresin, G.E. (2015) Antibacterial Activity of Extracts and Compounds Isolated from the Andean Medicinal Plant Azorellacryptantha (Clos) Reiche, Apiaceae. IndustrialCropsandProducts, 64, 152-157. https://doi.org/10.1016/j.indcrop.2014.10.065
[54]
Keddy, K.H., Sooka, A., Musekiwa, A., Smith, A.M., Ismail, H., Tau, N.P., et al. (2015) Clinical and Microbiological Features of Salmonella Meningitis in a South African Population, 2003-2013. ClinicalInfectiousDiseases, 61, S272-S282. https://doi.org/10.1093/cid/civ685
[55]
Keddy, K.H., Musekiwa, A., Sooka, A., Karstaedt, A., Nana, T., Seetharam, S., et al. (2017) Clinical and Microbiological Features of Invasive Nontyphoidal Salmonella Associated with HIV-Infected Patients, Gauteng Province, South Africa. Medicine, 96, e6448. https://doi.org/10.1097/md.0000000000006448
[56]
Kariuki, S., Mbae, C., Onsare, R., Kavai, S.M., Wairimu, C., Ngetich, R., et al. (2019) Multidrug-resistant Nontyphoidal Salmonella Hotspots as Targets for Vaccine Use in Management of Infections in Endemic Settings. ClinicalInfectiousDiseases, 68, S10-S15. https://doi.org/10.1093/cid/ciy898
[57]
Iroh Tam, P., Musicha, P., Kawaza, K., Cornick, J., Denis, B., Freyne, B., et al. (2018) Emerging Resistance to Empiric Antimicrobial Regimens for Pediatric Bloodstream Infections in Malawi (1998-2017). ClinicalInfectiousDiseases, 69, 61-68. https://doi.org/10.1093/cid/ciy834
[58]
Saliba, R., Zahar, J., Dabar, G., Riachy, M., Karam-Sarkis, D. and Husni, R. (2023) Limiting the Spread of Multidrug-Resistant Bacteria in Low-To-Middle-Income Countries: One Size Does Not Fit All. Pathogens, 12, Article 144. https://doi.org/10.3390/pathogens12010144
[59]
Alajel, S.M., Alzahrani, K.O., Almohisen, A.A., Alrasheed, M.M. and Almomen, S.M. (2023) Antimicrobial Sales Comparison before and after the Implementation of Nationwide Restriction Policy in Saudi Arabia. Antibiotics, 13, Article 15. https://doi.org/10.3390/antibiotics13010015
[60]
Aschbacher, R., Pagani, L., Migliavacca, R., Pagani, L., Confalonieri, M., Farina, C., et al. (2020) Recommendations for the Surveillance of Multidrug-Resistant Bacteria in Italian Long-Term Care Facilities by the Glister Working Group of the Italian Association of Clinical Microbiologists (AMCLI). AntimicrobialResistance&InfectionControl, 9, Article No. 106. https://doi.org/10.1186/s13756-020-00771-0
[61]
Hanson, J.R. (2006) Natural Products: The Secondary Metabolites. Royal Society of Chemistry, 105-130.
[62]
Kück, U., Bloemendal, S. and Teichert, I. (2014) Putting Fungi to Work: Harvesting a Cornucopia of Drugs, Toxins, and Antibiotics. PLOSPathogens, 10, e1003950. https://doi.org/10.1371/journal.ppat.1003950
[63]
Shen, B. (2003) Polyketide Biosynthesis Beyond the Type I, II and III Polyketide Synthase Paradigms. CurrentOpinioninChemicalBiology, 7, 285-295. https://doi.org/10.1016/s1367-5931(03)00020-6
[64]
Nielsen, J.C., Grijseels, S., Prigent, S., Ji, B., Dainat, J., Nielsen, K.F., et al. (2017) Global Analysis of Biosynthetic Gene Clusters Reveals Vast Potential of Secondary Metabolite Production in Penicillium Species. NatureMicrobiology, 2, Article No. 17044. https://doi.org/10.1038/nmicrobiol.2017.44
[65]
Yamazaki, H., Nonaka, K., Masuma, R., Ōmura, S. and Tomoda, H. (2009) Xanthoradones, New Potentiators of Imipenem Activity against Methicillin-Resistant Staphylococcusaureus, Produced by Penicilliumradicum FKI-3765-2: I. Taxonomy, Fermentation, Isolation and Biological Properties. TheJournalofAntibiotics, 62, 431-434. https://doi.org/10.1038/ja.2009.69
[66]
Orfali, R., Perveen, S., Al-Taweel, A., Ahmed, A.F., Majrashi, N., Alluhay, K., et al. (2020) Penipyranicins A-C: Antibacterial Methylpyran Polyketides from a Hydrothermal Spring Sediment Penicillium sp. JournalofNaturalProducts, 83, 3591-3597. https://doi.org/10.1021/acs.jnatprod.0c00741
[67]
Vrabl, P., Siewert, B., Winkler, J., Schöbel, H., Schinagl, C.W., Knabl, L., et al. (2022) Xanthoepocin, a Photolabile Antibiotic of Penicilliumochrochloron CBS 123823 with High Activity against Multiresistant Gram-Positive Bacteria. MicrobialCellFactories, 21, Article No. 1. https://doi.org/10.1186/s12934-021-01718-9
[68]
Miethbauer, S., Gaube, F., Möllmann, U., Dahse, H., Schmidtke, M., Gareis, M., et al. (2009) Antimicrobial, Antiproliferative, Cytotoxic, and Tau Inhibitory Activity of Rubellins and Caeruleoramularin Produced by the Phytopathogenic Fungus RamulariaCollo-Cygni. PlantaMedica, 75, 1523-1525. https://doi.org/10.1055/s-0029-1185835
[69]
Li, G., Kusari, S., Lamshöft, M., Schüffler, A., Laatsch, H. and Spiteller, M. (2014) Antibacterial Secondary Metabolites from an Endophytic Fungus, Eupenicillium sp. LG41. JournalofNaturalProducts, 77, 2335-2341. https://doi.org/10.1021/np500111w
[70]
Bo, G. (2000) Giuseppe Brotzu and the Discovery of Cephalosporins. ClinicalMicrobiologyandInfection, 6, 6-8. https://doi.org/10.1111/j.1469-0691.2000.tb02032.x
[71]
Gaynes, R. (2017) The Discovery of Penicillin—New Insights after More than 75 Years of Clinical Use. EmergingInfectiousDiseases, 23, 849-853. https://doi.org/10.3201/eid2305.161556
[72]
Shimoyama, A. and Ogasawara, R. (2002) Dipeptides and Diketopiperazines in the Yama-to-791198 and Murchison Carbonaceous Chondrites. OriginsofLifeandEvolutionoftheBiosphere, 32, 165-179. https://doi.org/10.1023/a:1016015319112
[73]
Furtado, N.A.J.C., Pupo, M.T., Carvalho, I., Campo, V.L., Duarte, M.C.T. and Bastos, J.K. (2005) Diketopiperazines Produced by an Aspergillus fumigatus Brazilian Strain. Journal of the Brazilian Chemical Society, 16, 1448-1453. https://doi.org/10.1590/S0103-50532005000800026
[74]
Kim, S., Shin, D., Lee, T. and Oh, K. (2004) Periconicins, Two New Fusicoccane Diterpenes Produced by an Endophytic Fungus Periconia sp. with Antibacterial Activity. JournalofNaturalProducts, 67, 448-450. https://doi.org/10.1021/np030384h
[75]
Elissawy, A., El-Shazly, M., Ebada, S., Singab, A. and Proksch, P. (2015) Bioactive Terpenes from Marine-Derived Fungi. MarineDrugs, 13, 1966-1992. https://doi.org/10.3390/md13041966
[76]
Nord, C., Levenfors, J.J., Bjerketorp, J., Sahlberg, C., Guss, B., Öberg, B., et al. (2019) Antibacterial Isoquinoline Alkaloids from the Fungus Penicillium spathulatum Em19. Molecules, 24, Article 4616. https://doi.org/10.3390/molecules24244616
[77]
Abdelalatif, A.M., Elwakil, B.H., Mohamed, M.Z., Hagar, M. and Olama, Z.A. (2023) Fungal Secondary Metabolites/Dicationic Pyridinium Iodide Combinations in Combat against Multi-Drug Resistant Microorganisms. Molecules, 28, Article 2434. https://doi.org/10.3390/molecules28062434
[78]
Chen, Y., Liu, C., Kumaravel, K., Nan, L. and Tian, Y. (2022) Two New Sulfate-Modified Dibenzopyrones with Anti-Foodborne Bacteria Activity from Sponge-Derived Fungus Alternaria Sp. SCSIOS02F49. FrontiersinMicrobiology, 13, Article 879674. https://doi.org/10.3389/fmicb.2022.879674
[79]
Hussein, M.E., Mohamed, O.G., El-Fishawy, A.M., El-Askary, H.I., El-Senousy, A.S., El-Beih, A.A., et al. (2022) Identification of Antibacterial Metabolites from Endophytic Fungus Aspergillusfumigatus, Isolated from Albizialucidior Leaves (Fabaceae), Utilizing Metabolomic and Molecular Docking Techniques. Molecules, 27, Article 1117. https://doi.org/10.3390/molecules27031117
[80]
Shang, Z., Li, X., Li, C. and Wang, B. (2012) Diverse Secondary Metabolites Produced by Marine-Derived Fungus Nigrospora sp. MA75 on Various Culture Media. Chemistry & Biodiversity, 9, 1338-1348. https://doi.org/10.1002/cbdv.201100216
[81]
Jouda, J., Tamokou, J., Mbazoa, C.D., Sarkar, P., Bag, P.K. and Wandji, J. (2016) Anticancer and Antibacterial Secondary Metabolites from the Endophytic Fungus Penicillium sp. CAM64 against Multi-Drug Resistant Gram-Negative Bacteria. AfricanHealthSciences, 16, 734. https://doi.org/10.4314/ahs.v16i3.13
[82]
Pan, C., Shi, Y., Auckloo, B.N., Hassan, S.S.u., Akhter, N., Wang, K., et al. (2017) Isolation and Antibiotic Screening of Fungi from a Hydrothermal Vent Site and Characterization of Secondary Metabolites from a Penicillium Isolate. MarineBiotechnology, 19, 469-479. https://doi.org/10.1007/s10126-017-9765-5
[83]
Devi, P., Rodrigues, C., Naik, C.G. and D’Souza, L. (2012) Isolation and Characterization of Antibacterial Compound from a Mangrove-Endophytic Fungus, Penicilliumchrysogenum MTCC 5108. IndianJournalofMicrobiology, 52, 617-623. https://doi.org/10.1007/s12088-012-0277-8