In agricultural soils, phosphorus is often limited, leading farmers to employ artificial supplementation through both inorganic and organic fertilization methods due to its restricted availability. Soil fertilization has the potential to augment both the abundance and diversity of bacterial communities. Our study aimed to assess the effects of phosphate amendments, derived from natural phosphate rock, and chemical fertilizers (TSP, NPK), on the density and diversity of bacterial communities within the study plots. We developed and applied eight phosphate amendments during the initial cultivation cycle. Soil samples were collected post 1st and 2nd cultivation cycles, and the quantification of both total and cultivable phosphate-solubilizing bacteria (PSB) was conducted. Additionally, we analyzed bacterial community structure, α-diversity (Shannon Diversity Index, Evenness Index, Chao1 Index). The combination of natural phosphate rock (PR) and chemical fertilizers (TSP, NPK) significantly increased (p < 0.05) both total cultivable aerobic bacteria (24 to 8500 × 107 bacteria/g dry soil) and phosphate-solubilizing bacteria (0.01 to 6.8 × 107 PSB/g dry soil) in comparison to unamended control soils. The diversity of bacterial phyla (Firmicutes, Actinobacteria, Proteobacteria, Halobacterota, Chloroflexia) observed under each treatment remained consistent regardless of the nature of the phosphate amendment applied. However, changes in the abundance of the bacterial phyla populations were observed as a function of the nature of the phosphate amendment or chemical fertilizer. It appears that the addition of excessive natural phosphate rock does not alter the number and the diversity of soil microorganisms population despite successive cultivation cycles. However, the addition of excessive chemical fertilizer reduces soil microorganisms density and structure after the 2nd cultivation cycle.
References
[1]
Takahashi, K., Mano, Y. and Otsuka, K. (2023) The Case of Côte d’Ivoire: Learning from Experts of Rice Farming Management and Peer Farmers about Rice Production. In: Otsuka, K., Mano, Y. and Takahashi, K., Eds., Rice Green Revolution in Sub-Saharan Africa, Springer Nature Singapore, 45-74. https://doi.org/10.1007/978-981-19-8046-6_3
[2]
Koné, B., Diatta, S., Saïdou, A., Akintayo, I. and Cissé, B. (2009) Réponses des variétés interspécifiques du riz de plateau aux applications de phosphate en zone de forêt au Nigeria. CanadianJournalofSoilScience, 89, 555-565. https://doi.org/10.4141/cjss08086
[3]
Koné, B. (2023) Combined Effect of Morocco Rock Phosphate and Chemical Fertilizer in Low-Land Rice Production in Guinea Savanna Zone of Côte d’Ivoire: Replenishment of Degraded Fluvisol for Boosting Rice Production. JournalofWasteManagement&RecyclingTechnology, 1, 1-7. https://doi.org/10.47363/jwmrt/2023(1)112
[4]
Zhang, S., Li, X., Chen, K., Shi, J., Wang, Y., Luo, P., et al. (2022) Long-Term Fertilization Altered Microbial Community Structure in an Aeolian Sandy Soil in Northeast China. FrontiersinMicrobiology, 13, Article 979759. https://doi.org/10.3389/fmicb.2022.979759
[5]
Krasilnikov, P., Taboada, M.A. and Amanullah, (2022) Fertilizer Use, Soil Health and Agricultural Sustainability. Agriculture, 12, Article 462. https://doi.org/10.3390/agriculture12040462
[6]
Cheng, H., Yuan, M., Duan, Q., Sun, R., Shen, Y., Yu, Q., et al. (2020) Influence of Phosphorus Fertilization Patterns on the Bacterial Community in Upland Farmland. IndustrialCropsandProducts, 155, Article ID: 112761. https://doi.org/10.1016/j.indcrop.2020.112761
[7]
Pahalvi, H.N., Rafiya, L., Rashid, S., Nisar, B. and Kamili, A.N. (2021) Chemical Fertilizers and Their Impact on Soil Health. In: Dar, G.H., Bhat, R.A., Mehmood, M.A. and Hakeem, K.R., Eds., MicrobiotaandBiofertilizers, Vol. 2, Springer, 1-20. https://doi.org/10.1007/978-3-030-61010-4_1
[8]
Ozlu, E. and Kumar, S. (2018) Response of Soil Organic Carbon, Ph, Electrical Conductivity, and Water Stable Aggregates to Long-Term Annual Manure and Inorganic Fertilizer. SoilScienceSocietyofAmericaJournal, 82, 1243-1251. https://doi.org/10.2136/sssaj2018.02.0082
[9]
Kai, T., Kumano, M. and Tamaki, M. (2020) A Study on Rice Growth and Soil Environments in Paddy Fields Using Different Organic and Chemical Fertilizers. JournalofAgriculturalChemistryandEnvironment, 9, 331-342. https://doi.org/10.4236/jacen.2020.94024
[10]
Pan, H., Chen, M., Feng, H., Wei, M., Song, F., Lou, Y., et al. (2020) Organic and Inorganic Fertilizers Respectively Drive Bacterial and Fungal Community Compositions in a Fluvo-Aquic Soil in Northern China. SoilandTillageResearch, 198, Article ID: 104540. https://doi.org/10.1016/j.still.2019.104540
[11]
Yan, T., Xue, J., Zhou, Z. and Wu, Y. (2021) Biochar-Based Fertilizer Amendments Improve the Soil Microbial Community Structure in a Karst Mountainous Area. ScienceoftheTotalEnvironment, 794, Article ID: 148757. https://doi.org/10.1016/j.scitotenv.2021.148757
[12]
Xu, Q., Ling, N., Chen, H., Duan, Y., Wang, S., Shen, Q., et al. (2020) Long-Term Chemical-Only Fertilization Induces a Diversity Decline and Deep Selection on the Soil Bacteria. mSystems, 5, e00337-20. https://doi.org/10.1128/msystems.00337-20
[13]
Yang, Y., Li, X., Liu, J., Zhou, Z., Zhang, T. and Wang, X. (2020) Fungal Community Structure in Relation to Manure Rate in Red Soil in Southern China. AppliedSoilEcology, 147, Article ID: 103442. https://doi.org/10.1016/j.apsoil.2019.103442
[14]
Sun, R., Zhang, X., Guo, X., Wang, D. and Chu, H. (2015) Bacterial Diversity in Soils Subjected to Long-Term Chemical Fertilization Can Be More Stably Maintained with the Addition of Livestock Manure than Wheat Straw. SoilBiologyandBiochemistry, 88, 9-18. https://doi.org/10.1016/j.soilbio.2015.05.007
[15]
Hu, X., Liu, J., Zhu, P., Wei, D., Jin, J., Liu, X., et al. (2018) Long-term Manure Addition Reduces Diversity and Changes Community Structure of Diazotrophs in a Neutral Black Soil of Northeast China. JournalofSoilsandSediments, 18, 2053-2062. https://doi.org/10.1007/s11368-018-1975-6
Choudhury, S.G., Bandyopadhyay, P.K., Mallick, S. and Sarkar, S. (2010) Soil Aggregation as Affected by Cultivation under Low and Upland Situations. Journal of the Indian Society of Soil Science, 58, 371-375.
[18]
Bongoua-Devisme, A.J., Mustin, C. and Berthelin, J. (2012) Responses of Iron-Reducing Bacteria to Salinity and Organic Matter Amendment in Paddy Soils of Thailand. Pedosphere, 22, 375-393. https://doi.org/10.1016/s1002-0160(12)60024-1
[19]
Apprill, A., McNally, S., Parsons, R. and Weber, L. (2015) Minor Revision to V4 Region SSU rRNA 806R Gene Primer Greatly Increases Detection of SAR11 Bacterioplankton. AquaticMicrobialEcology, 75, 129-137. https://doi.org/10.3354/ame01753
[20]
Parada, A.E., Needham, D.M. and Fuhrman, J.A. (2015) Every Base Matters: Assessing Small Subunit rRNA Primers for Marine Microbiomes with Mock Communities, Time Series and Global Field Samples. EnvironmentalMicrobiology, 18, 1403-1414. https://doi.org/10.1111/1462-2920.13023
[21]
Tekeu, H., Jeanne, T., D’Astous-Pagé, J. and Hogue, R. (2023) Artificial Network Inference Analysis Reveals the Impact of Biostimulant on Bacterial Communities in Fumigated Soil for Potato Production against Common Scab. FrontiersinSoilScience, 3, Article 1208929. https://doi.org/10.3389/fsoil.2023.1208909
[22]
Fierer, N., Jackson, J.A., Vilgalys, R. and Jackson, R.B. (2005) Assessment of Soil Microbial Community Structure by Use of Taxon-Specific Quantitative PCR Assays. AppliedandEnvironmentalMicrobiology, 71, 4117-4120. https://doi.org/10.1128/aem.71.7.4117-4120.2005
[23]
Wan, W., Qin, Y., Wu, H., Zuo, W., He, H., Tan, J., et al. (2020) Isolation and Characterization of Phosphorus Solubilizing Bacteria with Multiple Phosphorus Sources Utilizing Capability and Their Potential for Lead Immobilization in Soil. FrontiersinMicrobiology, 11, Article 752. https://doi.org/10.3389/fmicb.2020.00752
[24]
Wu, X., Cui, Z., Peng, J., Zhang, F. and Liesack, W. (2022) Genome-Resolved Metagenomics Identifies the Particular Genetic Traits of Phosphate-Solubilizing Bacteria in Agricultural Soil. ISMECommunications, 2, 1-7. https://doi.org/10.1038/s43705-022-00100-z
[25]
Bolyen, E., Rideout, J.R., Dillon, M.R., Bokulich, N.A., Abnet, C.C., Al-Ghalith, G.A., et al. (2019) Reproducible, Interactive, Scalable and Extensible Microbiome Data Science Using QIIME 2. NatureBiotechnology, 37, 852-857. https://doi.org/10.1038/s41587-019-0209-9
[26]
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., et al. (2012) The SILVA Ribosomal RNA Gene Database Project: Improved Data Processing and Web-Based Tools. NucleicAcidsResearch, 41, D590-D596. https://doi.org/10.1093/nar/gks1219
[27]
Douglas, G.M., Maffei, V.J., Zaneveld, J., Yurgel, S.N., Brown, J.R., Taylor, C.M. and Langille, M.G. (2019) PICRUSt2: An Improved and Extensible Approach for Metagenome Inference. bioRxiv.
[28]
Sarr, S.R., Ndiaye, M., Thiam, A. and Mane, F. (2021) Étude comparative des peuplements ichtyologiques de l’Aire Marine Protégée de Joal-Fadiouth et des pêcheries des zones du pourtour non protégées à l’exploitation halieutique. European Scientific Journal, ESJ, 17, 133. https://doi.org/10.19044/esj.2021.v17n17p133
[29]
Liu, S., Meng, J., Jiang, L., Yang, X., Lan, Y., Cheng, X., et al. (2017) Rice Husk Biochar Impacts Soil Phosphorous Availability, Phosphatase Activities and Bacterial Community Characteristics in Three Different Soil Types. AppliedSoilEcology, 116, 12-22. https://doi.org/10.1016/j.apsoil.2017.03.020
[30]
Don, A., Böhme, I.H., Dohrmann, A.B., Poeplau, C. and Tebbe, C.C. (2017) Microbial Community Composition Affects Soil Organic Carbon Turnover in Mineral Soils. BiologyandFertilityofSoils, 53, 445-456. https://doi.org/10.1007/s00374-017-1198-9
[31]
Li, J., Wu, X., Gebremikael, M.T., Wu, H., Cai, D., Wang, B., et al. (2018) Response of Soil Organic Carbon Fractions, Microbial Community Composition and Carbon Mineralization to High-Input Fertilizer Practices under an Intensive Agricultural System. PLOSONE, 13, e0195144. https://doi.org/10.1371/journal.pone.0195144
[32]
Attard, E., Recous, S., Chabbi, A., De Berranger, C., Guillaumaud, N., Labreuche, J., et al. (2010) Soil Environmental Conditions Rather than Denitrifier Abundance and Diversity Drive Potential Denitrification after Changes in Land Uses. GlobalChangeBiology, 17, 1975-1989. https://doi.org/10.1111/j.1365-2486.2010.02340.x
[33]
Assémien, F.L., Pommier, T., Gonnety, J.T., Gervaix, J. and Le Roux, X. (2017) Adaptation of Soil Nitrifiers to Very Low Nitrogen Level Jeopardizes the Efficiency of Chemical Fertilization in West African Moist Savannas. ScientificReports, 7, Article No. 10275. https://doi.org/10.1038/s41598-017-10185-5
[34]
Khmelevtsova, L.E., Sazykin, I.S., Azhogina, T.N. and Sazykina, M.A. (2022) Influence of Agricultural Practices on Bacterial Community of Cultivated Soils. Agriculture, 12, Article 371. https://doi.org/10.3390/agriculture12030371
[35]
Szoboszlay, M., Dohrmann, A.B., Poeplau, C., Don, A. and Tebbe, C.C. (2017) Impact of Land-Use Change and Soil Organic Carbon Quality on Microbial Diversity in Soils across Europe. FEMSMicrobiologyEcology, 93, fix146. https://doi.org/10.1093/femsec/fix146
[36]
Geisler, O. (2009) Etude de l’impact des pratiques agricoles sur les capacités fonctionnelles des communautés microbiennes en lien avec le recyclage de la matière organique. Master’s Thesis, Université de Lorraine.
[37]
Vian, J.F., Peigne, J., Chaussod, R. and Roger-Estrade, J. (2009) Effects of Four Tillage Systems on Soil Structure and Soil Microbial Biomass in Organic Farming. SoilUseandManagement, 25, 1-10. https://doi.org/10.1111/j.1475-2743.2008.00176.x
[38]
Simonin, M., Le Roux, X., Poly, F., Lerondelle, C., Hungate, B.A., Nunan, N., et al. (2015) Coupling between and among Ammonia Oxidizers and Nitrite Oxidizers in Grassland Mesocosms Submitted to Elevated CO2 and Nitrogen Supply. MicrobialEcology, 70, 809-818. https://doi.org/10.1007/s00248-015-0604-9
[39]
Bai, Y.C., Chang, Y.Y., Hussain, M., Lu, B., Zhang, J.P., Song, X.B., Lei, X.S. and Pei, D. (2020) Soil Chemical and Microbiological Properties Are Changed by Long-Term Chemical Fertilizers That Limit Ecosystem Functioning. Microorganisms, 8, 694. https://doi.org/10.3390/microorganisms8050694
[40]
Lori, M., Hartmann, M., Kundel, D., Mayer, J., Mueller, R.C., Mäder, P., et al. (2023) Soil Microbial Communities Are Sensitive to Differences in Fertilization Intensity in Organic and Conventional Farming Systems. FEMSMicrobiologyEcology, 99, fiad046. https://doi.org/10.1093/femsec/fiad046
[41]
Iqbal, A., Liang, H., McBride, S.G., Yuan, P., Ali, I., Zaman, M., et al. (2022) Manure Applications Combined with Chemical Fertilizer Improves Soil Functionality, Microbial Biomass and Rice Production in a Paddy Field. AgronomyJournal, 114, 1431-1446. https://doi.org/10.1002/agj2.20990
[42]
Wang, Q., Wang, C., Yu, W., Turak, A., Chen, D., Huang, Y., et al. (2018) Effects of Nitrogen and Phosphorus Inputs on Soil Bacterial Abundance, Diversity, and Community Composition in Chinese Fir Plantations. FrontiersinMicrobiology, 9, Article 1543. https://doi.org/10.3389/fmicb.2018.01543
[43]
Prakash, J. and Arora, N.K. (2019) Phosphate-Solubilizing Bacillus sp. Enhances Growth, Phosphorus Uptake and Oil Yield of Menthaarvensis L. 3 Biotech, 9, Article No. 126. https://doi.org/10.1007/s13205-019-1660-5
[44]
Zhao, X.R., Lin, Q.M. and Li, B.G. (2002) Effect of C, N Sources and C/N Ratio on the Solubilization of Rock Phosphate by Some Microorganisms. JournalofPlantNutritionandFertilizers, 8, 197-204.