全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Grasshopper Incidence and Severity of Damage as Influenced by Cyanogenic Potential in Leaf Tissue of Cassava (Manihot esculenta Crantz)

DOI: 10.4236/ami.2024.133003, PP. 23-38

Keywords: Cassava, Cyanogenic Potential, Grasshopper Infestation, Regression, Correlation Analysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

This study assessed the effect of cyanogenic potential (CNP) in leaf tissue on grasshopper incidence and severity of damage in cassava for the identi?cation of parents with desired complementary traits for crossing. The experiment was conducted at the Foya Wulleh, Njala experimental site in Sierra Leone during 2020 and 2021 cropping seasons in a randomized complete block design with three replications. A total of 30 genotypes comprising 26 breeding lines, two improved and two local genotypes were assessed. Results showed a signi?cant (p < 0.05) linear relationship between leaf CNP and grasshopper infestation (incidence and severity of damage) among cassava genotypes. Findings showed that the higher leaf CNP, the lower the grasshopper infestation in cassava genotypes. About two genotypes (Cooksoon and Cocoa) had low leaf CNP; three genotypes (TR0020, TR0037 and TR0013) CNP had moderately low leaf CNP; eight genotypes (SLICASS 6, TR0029, TR0032, TR0011, TR0012, TR0016-1/17, TR0002 and TR0010) had intermediate leaf CNP; seven (TR0009, TR0015-1/17, TR0036, TR0022-1/17, SLICASS 4, TR0007 and TR0026-1/17) had moderately high leaf CNP; eight (TR0008, TR0019-1/17, TR0006, TR0005, TR0021, TR0021-1/17, TR0022 and TR0024-1/17) had high leaf CNP; and two genotypes (TR0001 and TR0018-1/17) had very high leaf CNP. This suggests the indirect dependence of leaf cyanogenic potential on grasshopper infestation (incidence and severity of damage) in cassava that could be exploited for the genetic improvement of cassava for improved resistance to grasshopper infestation, nutrition and utilization of the crop.

References

[1]  Fei, S., Mahama, A.A., Singh, A.K. and Singh, A. (2023) Cassava Breeding. In: Suza, W.P. and Lamkey, K.R., Eds., Crop Improvement. Iowa State University Digital Press.
https://iastate.pressbooks.pub/cropimprovement/chapter/cassava-breeding/
[2]  Owolade, O.F., Dixon, A.G.O. and Adeoti, A.Y.A. (2006) Diallel Analysis of Cassava Genotypes to Anthracnose Disease. World Journal of Agriculture Science, 2, 98-104.
[3]  Sesay, J.V., Lebbie, A., Wadsworth, R., Nuwamanya, E., Bado, S. and Norman, P.E. (2023) Genetic Structure and Diversity Study of Cassava (Manihot esculenta) Germ-plasm for African Cassava Mosaic Disease and Fresh Storage Root Yield. Open Journal of Genetics, 13, 23-47.
https://doi.org/10.4236/ojgen.2023.131002
[4]  Esuma, W., Nanyonjo, A.R., Miiro, R., Angudubo, S. and Kawuki, R.S. (2019) Men and Women’s Perception of Yellow-Root Cassava among Rural Farmers in Eastern Uganda. Agriculture & Food Security, 8, Article No. 10.
https://doi.org/10.1186/s40066-019-0253-1
[5]  Chávez, A.L., Sánchez, T., Jaramillo, G., Bedoya, J.M., Echeverry, J., Bolaños, E.A., et al. (2005) Variation of Quality Traits in Cassava Roots Evaluated in Landraces and Improved Clones. Euphytica, 143, 125-133.
https://doi.org/10.1007/s10681-005-3057-2
[6]  Ntawuruhunga, P., Ssemakula, G., Ojulong, H., Bua, A., Ragama, P., Kanobe, C. and Whyte, J. (2006) Evaluation of Advanced Cassava Genotypes in Uganda. African Crop Science, 14, 17-25.
[7]  Chipeta, M.M., Bokosi, J.M., Saka, V.W. and Benesi, I.R.M. (2013) Combining Ability and Mode of Gene Action in Cassava for Resistance to Cassava Green Mite and Cassava Mealy Bug in Malawi. Global Science Research Journals, 1, 71-78.
http://www.academicjournals.org/JPBCS
[8]  Torto, S.J., Samura, A.E., Sundufu, A.J., Quee, D.D., Musa, D.P., Kanu, S.A., et al. (2023) Infestación de Saltamontes (Zonocerus variegatus L) y Contenido de Materia Seca en Raíces de Yuca Influenciados por la Fecha de Siembra y los Genotipos de Yuca. Peruvian Journal of Agronomy, 7, 42-50.
https://doi.org/10.21704/pja.v7i1.2001
[9]  USDA United States Department of Agriculture (2016) Cassava, Raw. (Basic. Re-port: 11134). National Nutrient Database for Standard Reference Release 28. Agri-cultural Research Service, US Department of Agriculture.
[10]  Kintché, K., Hauser, S., Mahungu, N.M., Ndonda, A., Lukombo, S., Nhamo, N., et al. (2017) Cassava Yield Loss in Farmer Fields Was Mainly Caused by Low Soil Fertility and Suboptimal Management Practices in Two Provinces of the Democratic Republic of Congo. European Journal of Agronomy, 89, 107-123.
https://doi.org/10.1016/j.eja.2017.06.011
[11]  Braima, J., Yeninek, J., Neuenschwander, P., Cudjoe, A., Modder, W., Echendu, N.C. and Toko, M. (2000). Pest Control in Cassava Farms: IPM Field Guide for Extension Agents. International Institute of Tropical Agriculture.
[12]  Mansaray, A., Sundufu, J.A., Samura, E.A., Massaquoi, B.F., Quee, D.D., Fomba, N.S., et al. (2012) Cassava Genotype Evaluation for Grasshopper Zonocerus variegatus (L.) (Orthoptera: Pyrgomorphidae) Susceptibility in Southern Sierra Leone. International Journal of Agriculture and Forestry, 2, 294-299.
https://doi.org/10.5923/j.ijaf.20120206.05
[13]  Song, H. (2010) Grasshopper Systematics: Past, Present and Future. Journal of Orthoptera Research, 19, 57-68.
https://doi.org/10.1665/034.019.0112
[14]  Isely, F.B. (1944) Correlation between Mandibular Morphology and Food Specificity in Grasshoppers. Annals of the Entomological Society of America, 37, 47-67.
https://doi.org/10.1093/aesa/37.1.47
[15]  Bellotti, A.C. (2001) Arthropod Pests. In: Hillocks, R.J. and Thresh, J.M., Eds., Cassava: Biology, Production and Utilization, CABI Publishing, 209-235.
https://doi.org/10.1079/9780851995243.0209
[16]  Bellotti, A.C. and Arias, B. (2001) Host Plant Resistance to Whiteflies with Emphasis on Cassava as a Case Study. Crop Protection, 20, 813-823.
https://doi.org/10.1016/s0261-2194(01)00113-2
[17]  Erb, M. and Kliebenstein, D.J. (2020) Plant Secondary Metabolites as Defenses, Regulators, and Primary Metabolites: The Blurred Functional Trichotomy. Plant Physiology, 184, 39-52.
https://doi.org/10.1104/pp.20.00433
[18]  Møller, B.L. and Seigler, D.S. (1999) Biosynthesis of Cyanogenic Glucosides, Cyano-lipids and Related Compounds. In: Singh, B.K., Ed., Plant Amino Acids, M. Dekker, 563-609.
[19]  Zagrobelny, M., Bak, S., Rasmussen, A.V., Jørgensen, B., Naumann, C.M. and Lindberg Møller, B. (2004) Cyanogenic Glucosides and Plant-Insect Interactions. Phytochemistry, 65, 293-306.
https://doi.org/10.1016/j.phytochem.2003.10.016
[20]  Vetter, J. (2000) Plant Cyanogenic Glycosides. Toxicon, 38, 11-36.
https://doi.org/10.1016/s0041-0101(99)00128-2
[21]  Brattsten, L.B., Samuelian, J.H., Long, K.Y., Kincaid, S.A. and Evans, C.K. (1983) Cyanide as a Feeding Stimulant for the Southern Army Worm, Spodoptera eridania. Ecological Entomology, 8, 125-132.
https://doi.org/10.1111/j.1365-2311.1983.tb00490.x
[22]  Davis, R.H. and Nahrstedt, A. (1985) Cyanogenesis in Insects. In: Kerkut, G.A. and Gilbert, L.I., Eds., Pharmacology, Elsevier, 635-654.
https://doi.org/10.1016/b978-0-08-030812-8.50020-4
[23]  Jones, P.R., Andersen, M.D., Nielsen, J.S., Høj, P.B. and Møller, B.L. (2000) The Biosynthesis, Degradation, Transport and Possible Function of Cyanogenic Glucosides. In: Romero, J.T., Ibrahim, R., Varin, L. and De Luca, V., Eds., Recent Advances in Phytochemistry, Elsevier, 191-247.
https://doi.org/10.1016/s0079-9920(00)80008-8
[24]  Lechtenberg, M. and Nahrstedt, A. (1999). Cyanogenic Glucosides. In: Ikan, R., Ed., Naturally Occurring Glycosides, John Wiley & Sons, 147-191.
[25]  Nahrstedt, A. (1996) Relationships between the Defense Systems of Plants and Insects. In: Romeo, X., Saunders, X. and Barbossa, X., Eds., Phytochemical Diversity and Redundancy in Ecological Interactions, Springer US, 217-230.
https://doi.org/10.1007/978-1-4899-1754-6_8
[26]  Gleadow, R.M. and Woodrow, I.E. (2002) Constraints on Effectiveness of Cyano-Genic Glycosides in Herbivore Defense. Journal of Chemical Ecology, 28, 1301-1313.
https://doi.org/10.1023/a:1016298100201
[27]  Fukuda, W.M.G., Guevara, C.L., Kawuki, R. and Ferguson, M.E. (2010) Selected Morphological and Agronomic Descriptors for the Characterization of Cassava. International Institute of Tropical Agriculture (IITA), 19 p.
[28]  Capinera, J.L. (1993) Host-Plant Selection by Schistocerca americana (Orthoptera: Acrididae). Environmental Entomology, 22, 127-133.
https://doi.org/10.1093/ee/22.1.127
[29]  Steel, R.G.D. and Torrie, J.H. (1980) Principles and Procedures of Statistics, a Bio-metrical Approach. 2nd Edition, McGraw-Hill Publishing Company, 481 p.
[30]  Riis, L., Bellotti, A.C., Bonierbale, M. and O’brien, G.M. (2003) Cyanogenic Potential in Cassava and Its Influence on a Generalist Insect Herbivore Cyrtomenus bergi (Hemiptera: Cydnidae). Journal of Economic Entomology, 96, 1905-1914.
https://doi.org/10.1093/jee/96.6.1905
[31]  Rajamma, P., McFarlane, J.A. and Poulter, N.H. (1994) Susceptibility of Rhyzoper-tha dominica (F.) (Coleoptera: Bostrichidae) and Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae) to Cyanogens in Dried Cassava Products. Tropical Science, 34, 315-320.
[32]  El-Sharkawy, M.A. (1993) Drought-Tolerant Cassava for Africa, Asia, and Latin America. BioScience, 43, 441-451.
https://doi.org/10.2307/1311903
[33]  Fry, W.E. and Myers, D.F. (1981) Hydrogen Cyanide Metabolism by Fungal Pathogens of Cyanogenic Plants. In: Vennesland, B., Conn, E.E., Knowles, C.J., Westley, J. and Wissing, F., Eds., Cyanide in Biology, Academic Press, 321-334.
[34]  Tan, S.L. and Mak, C. (1995) Genotype × Environment Influence on Cassava Performance. Field Crops Research, 42, 111-123.
https://doi.org/10.1016/0378-4290(95)00016-j
[35]  Ayanru, D.K.G. and Sharma, V.C. (1984) Changes in Total Cyanide Content of Tissues from Cassava Plants Infested by Mites (Mononychellus tanajoa) and Mealybugs (Phenacoccus manihoti). Agriculture, Ecosystems & Environment, 12, 35-46.
https://doi.org/10.1016/0167-8809(84)90059-8
[36]  Nahrstedt, A. (1985) Cyanogenic Compounds as Protecting Agents for Organisms. Plant Systematics and Evolution, 150, 35-47.
https://doi.org/10.1007/bf00985566

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133