In this note we consider ruled varieties
of
, generalizing some results shown for
in previous papers. By choosing appropriately two directrix curves, a
represents a non-affine subplane of order
of the projective plane
represented in
by a spread of a hyperplane. That proves the conjecture assumed in [1]. Finally, a large family of linear codes dependent on
is associated with projective systems defined both by
and by a maximal bundle of such varieties with only an r-directrix in common, then are shown their basic parameters.
References
[1]
Vincenti, R. (2024) Subplanes of and the Ruled Varieties of . Open Journal of Discrete Mathematics, 14, 16-27. https://doi.org/10.4236/ojdm.2024.142003
[2]
André, J. (1954) Über nicht-Desarguessche Ebenen mit transitiver Translationsgruppe. MathematischeZeitschrift, 60, 156-186. https://doi.org/10.1007/BF01187370
[3]
Brück, R.H. and Bose, R.C. (1966) Linear Representations of Projective Planes in Projective Spaces. Journal of Algebra, 4, 117-172. https://doi.org/10.1016/0021-8693(66)90054-8
[4]
Casse, R. and Quinn, C.T. (2002) Ruled Cubic Surfaces in , Baer Subplanes of and Hermitian Curves. Discrete Mathematics, 248, 17-25. https://doi.org/10.1016/S0012-365X(01)00182-0
[5]
Vincenti, R. (1980) Alcuni tipi di varietá di e sottopiani di Baer. Algebra e Geometria, 2, 31-44.
[6]
Vincenti, R. (1983) A Survey on Varieties of and Baer Subplans of Translation Planes. Annals of Discrete Mathematics, 18, 775-780.
[7]
Bertini, E. (1907) Introduzione alla geometria proiettiva degli iperspazi, Enrico Spoerri Editore, Pisa.
[8]
Pless, V.S. and Huffman, W.C. (1998) Handbook of Coding Theory. Elsevier.
[9]
Wei, V.K. (1991) Generalized Hamming Weights for Linear Codes. IEEE Transactions on Information Theory, 37, 1412-1418. https://doi.org/10.1109/18.133259
[10]
Hirschfeld, J.W.P. (1985) Finite Projective Spaces of Three Dimensions. Clarendon Press.
[11]
Shoup, V. (1990) New Algorithms for Finding Irreducible Polynomials over Finite Fields. Mathematics of Computation, 54, 435-447. https://doi.org/10.1090/s0025-5718-1990-0993933-0
[12]
Whyburn, C. (1970) The Distribution of r-th Powers in a Finite Field. Journal für die reine und angewandteMathematik, 245, 183-187. http://eudml.org/doc/151070
[13]
Barlotti, A. (1962) Un’osservazione sulle proprietá che caratterizzano un piano grafico finito, Boll.
[14]
Corsi, G. (1963) Sui sistemi minimi di assiomi atti a definire un piano grafico finito, Nota dell’Istituto Matematico di Firenze, Marzo.