全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Subplanes of PG(2,qr), Ruled Varieties V2r-12????in?PG( 2r,q), and Related Codes

DOI: 10.4236/ojdm.2024.144006, PP. 54-71

Keywords: Finite Geometry, Translation Planes, Spreads, Varieties

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this note we consider ruled varieties V 2 2r1 of PG( 2r,q ) , generalizing some results shown for r=2,3 in previous papers. By choosing appropriately two directrix curves, a V 2 2r1 represents a non-affine subplane of order q of the projective plane PG( 2, q r ) represented in PG( 2r,q ) by a spread of a hyperplane. That proves the conjecture assumed in [1]. Finally, a large family of linear codes dependent on r2 is associated with projective systems defined both by V 2 2r1 and by a maximal bundle of such varieties with only an r-directrix in common, then are shown their basic parameters.

References

[1]  Vincenti, R. (2024) Subplanes of and the Ruled Varieties of . Open Journal of Discrete Mathematics, 14, 16-27.
https://doi.org/10.4236/ojdm.2024.142003
[2]  André, J. (1954) Über nicht-Desarguessche Ebenen mit transitiver Translationsgruppe. Mathematische Zeitschrift, 60, 156-186.
https://doi.org/10.1007/BF01187370
[3]  Brück, R.H. and Bose, R.C. (1966) Linear Representations of Projective Planes in Projective Spaces. Journal of Algebra, 4, 117-172.
https://doi.org/10.1016/0021-8693(66)90054-8
[4]  Casse, R. and Quinn, C.T. (2002) Ruled Cubic Surfaces in , Baer Subplanes of and Hermitian Curves. Discrete Mathematics, 248, 17-25.
https://doi.org/10.1016/S0012-365X(01)00182-0
[5]  Vincenti, R. (1980) Alcuni tipi di varietá di e sottopiani di Baer. Algebra e Geometria, 2, 31-44.
[6]  Vincenti, R. (1983) A Survey on Varieties of and Baer Subplans of Translation Planes. Annals of Discrete Mathematics, 18, 775-780.
[7]  Bertini, E. (1907) Introduzione alla geometria proiettiva degli iperspazi, Enrico Spoerri Editore, Pisa.
[8]  Pless, V.S. and Huffman, W.C. (1998) Handbook of Coding Theory. Elsevier.
[9]  Wei, V.K. (1991) Generalized Hamming Weights for Linear Codes. IEEE Transactions on Information Theory, 37, 1412-1418.
https://doi.org/10.1109/18.133259
[10]  Hirschfeld, J.W.P. (1985) Finite Projective Spaces of Three Dimensions. Clarendon Press.
[11]  Shoup, V. (1990) New Algorithms for Finding Irreducible Polynomials over Finite Fields. Mathematics of Computation, 54, 435-447.
https://doi.org/10.1090/s0025-5718-1990-0993933-0
[12]  Whyburn, C. (1970) The Distribution of r-th Powers in a Finite Field. Journal für die reine und angewandte Mathematik, 245, 183-187.
http://eudml.org/doc/151070
[13]  Barlotti, A. (1962) Un’osservazione sulle proprietá che caratterizzano un piano grafico finito, Boll.
[14]  Corsi, G. (1963) Sui sistemi minimi di assiomi atti a definire un piano grafico finito, Nota dell’Istituto Matematico di Firenze, Marzo.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133