Epstein-Barr virus (EBV) infects over 90% of the global population, establishing latent infections in most individuals. Under specific conditions like inflammation and immune suppression, EBV can be reactivated, leading to the initiation and progression of related diseases. While inflammation is known to induce EBV reactivation, the precise mechanisms underlying this phenomenon remain unclear. Chemokine (C-X-C motif) ligand (CXCL10), a key inflammatory factor, plays a significant role in various infectious diseases. In this study, we investigated how CXCL10 levels regulate the transition between the latent and lytic replication phases of the EBV lifecycle using cell culture, Western blot, fluorescent quantitative PCR, immunofluorescence, and flow cytometric apoptosis assays. Our findings indicate that CXCL10 induces EBV transition from latency to lytic replication through its receptor CXCR3 by regulating the downstream effector, exostosis-like glycosyltransferase 1. Additionally, CXCL10 activates the JAK2/STAT3 pathway. This study confirms the role of CXCL10 in promoting EBV lytic replication, providing crucial insights into the pathogenic mechanisms of inflammation-triggered EBV reactivation.
References
[1]
Yu, H. and Robertson, E.S. (2023) Epstein-Barr Virus History and Pathogenesis. Viruses, 15, Article 714. https://doi.org/10.3390/v15030714
[2]
Farrell, P.J. (2019) Epstein-Barr Virus and Cancer. Annual Review of Pathology: Mechanisms of Disease, 14, 29-53. https://doi.org/10.1146/annurev-pathmechdis-012418-013023
[3]
Damania, B., Kenney, S.C. and Raab-Traub, N. (2022) Epstein-Barr Virus: Biology and Clinical Disease. Cell, 185, 3652-3670. https://doi.org/10.1016/j.cell.2022.08.026
[4]
Chen, C., Feng, P. and Slots, J. (2019) Herpesvirus‐Bacteria Synergistic Interaction in Periodontitis. Periodontology 2000, 82, 42-64. https://doi.org/10.1111/prd.12311
[5]
Young, L.S., Yap, L.F. and Murray, P.G. (2016) Epstein-Barr Virus: More than 50 Years Old and Still Providing Surprises. Nature Reviews Cancer, 16, 789-802. https://doi.org/10.1038/nrc.2016.92
[6]
Taylor, G.S., Long, H.M., Brooks, J.M., Rickinson, A.B. and Hislop, A.D. (2015) The Immunology of Epstein-Barr Virus-Induced Disease. Annual Review of Immunology, 33, 787-821. https://doi.org/10.1146/annurev-immunol-032414-112326
[7]
Damania, B., Kenney, S.C. and Raab-Traub, N. (2022) Epstein-Barr Virus: Biology and Clinical Disease. Cell, 185, 3652-3670. https://doi.org/10.1016/j.cell.2022.08.026
[8]
Dreyfus, D.H. (2013) Herpesviruses and the Microbiome. Journal of Allergy and Clinical Immunology, 132, 1278-1286. https://doi.org/10.1016/j.jaci.2013.02.039
[9]
Guo, R., Jiang, C., Zhang, Y., Govande, A., Trudeau, S.J., Chen, F., et al. (2020) MYC Controls the Epstein-Barr Virus Lytic Switch. Molecular Cell, 78, 653-669.E8. https://doi.org/10.1016/j.molcel.2020.03.025
[10]
Buschle, A. and Hammerschmidt, W. (2020) Epigenetic Lifestyle of Epstein-Barr Virus. Seminars in Immunopathology, 42, 131-142. https://doi.org/10.1007/s00281-020-00792-2
[11]
Zhang, H., Wong, J.P., Ni, G., Cano, P., Dittmer, D.P. and Damania, B. (2022) Mitochondrial Protein, TBRG4, Modulates KSHV and EBV Reactivation from Latency. PLOS Pathogens, 18, e1010990. https://doi.org/10.1371/journal.ppat.1010990
[12]
Katsumura, K.R., Maruo, S. and Takada, K. (2012) EBV Lytic Infection Enhances Transformation of B‐Lymphocytes Infected with EBV in the Presence of T‐Lymphocytes. Journal of Medical Virology, 84, 504-510. https://doi.org/10.1002/jmv.23208
[13]
Hammerschmidt, W. and Sugden, B. (2013) Replication of Epstein-Barr Viral DNA. Cold Spring Harbor Perspectives in Biology, 5, a013029. https://doi.org/10.1101/cshperspect.a013029
[14]
Altmann, D.M., Whettlock, E.M., Liu, S., Arachchillage, D.J. and Boyton, R.J. (2023) The Immunology of Long COVID. Nature Reviews Immunology, 23, 618-634. https://doi.org/10.1038/s41577-023-00904-7
[15]
Bennett, J.M., Glaser, R., Malarkey, W.B., Beversdorf, D.Q., Peng, J. and Kiecolt-Glaser, J.K. (2012) Inflammation and Reactivation of Latent Herpesviruses in Older Adults. Brain, Behavior, and Immunity, 26, 739-746. https://doi.org/10.1016/j.bbi.2011.11.007
[16]
Antonelli, A., Ferrari, S.M., Giuggioli, D., Ferrannini, E., Ferri, C. and Fallahi, P. (2014) Chemokine (C-X-C Motif) Ligand (CXCL)10 in Autoimmune Diseases. Autoimmunity Reviews, 13, 272-280. https://doi.org/10.1016/j.autrev.2013.10.010
[17]
Tamassia, N., Calzetti, F., Ear, T., Cloutier, A., Gasperini, S., Bazzoni, F., et al. (2007) Molecular Mechanisms Underlying the Synergistic Induction of CXCL10 by LPS and IFN‐γ in Human Neutrophils. European Journal of Immunology, 37, 2627-2634. https://doi.org/10.1002/eji.200737340
[18]
Ozga, A.J., Chow, M.T., Lopes, M.E., Servis, R.L., Di Pilato, M., Dehio, P., et al. (2022) CXCL10 Chemokine Regulates Heterogeneity of the CD8+ T Cell Response and Viral Set Point during Chronic Infection. Immunity, 55, 82-97.E8. https://doi.org/10.1016/j.immuni.2021.11.002
[19]
Ruder, J., Dinner, G., Maceski, A., Berenjeno-Correa, E., Müller, A.M., Jelcic, I., et al. (2022) Dynamics of Inflammatory and Neurodegenerative Biomarkers after Autologous Hematopoietic Stem Cell Transplantation in Multiple Sclerosis. International Journal of Molecular Sciences, 23, Article 10946. https://doi.org/10.3390/ijms231810946
[20]
Kim, B., Kitagawa, H., Tamura, J., Saito, T., Kusche-Gullberg, M., Lindahl, U., et al. (2001) Human Tumor Suppressor EXT Gene Family Members EXTL1 and EXTL3 Encode α1,4-N-Acetylglucosaminyltransferases That Likely Are Involved in Heparan Sulfate/Heparin Biosynthesis. Proceedings of the National Academy of Sciences, 98, 7176-7181. https://doi.org/10.1073/pnas.131188498
[21]
Yang, C.‐W., Cho, Y.‐T., Hsieh, Y.‐C., Hsu, S.‐H., Chen, K.‐L. and Chu, C.‐Y. (2020) The Interferon‐γ‐Induced Protein 10/CXCR3 Axis Is Associated with Human Herpesvirus‐6 Reactivation and the Development of Sequelae in Drug Reaction with Eosinophilia and Systemic Symptoms. British Journal of Dermatology, 183, 909-919. https://doi.org/10.1111/bjd.18942
[22]
Higuchi, T., Hashida, Y., Matsuo, K., Kitahata, K., Ujihara, T., Murakami, I., et al. (2023) EBV‐Positive Pyothorax‐Associated Lymphoma Expresses CXCL9 and CXCL10 Chemokines That Attract Cytotoxic Lymphocytes via CXCR3. Cancer Science, 114, 2622-2633. https://doi.org/10.1111/cas.15782
[23]
Woller, N. and Kühnel, F. (2013) Virus Infection, Inflammation and Prevention of Cancer. In: Chang, M. and Jeang, KT., Eds., Viruses and Human Cancer, Springer, 33-58. https://doi.org/10.1007/978-3-642-38965-8_3
[24]
Wei, F., Zhu, Q., Ding, L., Liang, Q. and Cai, Q. (2016) Manipulation of the Host Cell Membrane by Human γ-Herpesviruses EBV and KSHV for Pathogenesis. Virologica Sinica, 31, 395-405. https://doi.org/10.1007/s12250-016-3817-2
[25]
Mogensen, T.H. and Paludan, S.R. (2001) Molecular Pathways in Virus-Induced Cytokine Production. Microbiology and Molecular Biology Reviews, 65, 131-150. https://doi.org/10.1128/mmbr.65.1.131-150.2001
[26]
Brooks, B., Tancredi, C., Song, Y., Mogus, A.T., Huang, M.W., Zhu, H., et al. (2022) Epstein-Barr Virus and Human Herpesvirus-6 Reactivation in Acute COVID-19 Patients. Viruses, 14, Article 1872. https://doi.org/10.3390/v14091872
[27]
Jung, Y., Choi, H., Kim, H. and Lee, S.K. (2014) MicroRNA miR-BART20-5p Stabilizes Epstein-Barr Virus Latency by Directly Targeting BZLF1 and BRLF1. Journal of Virology, 88, 9027-9037. https://doi.org/10.1128/jvi.00721-14
[28]
He, H., Lei, F., Huang, L., Wang, K., Yang, Y., Chen, L., et al. (2023) Immunotherapy of Epstein-Barr Virus (EBV) Infection and EBV-Associated Hematological Diseases with gp350/CD89-Targeted Bispecific Antibody. Biomedicine & Pharmacotherapy, 163, 114797. https://doi.org/10.1016/j.biopha.2023.114797
[29]
Lo, B.K.K., Yu, M., Zloty, D., Cowan, B., Shapiro, J. and McElwee, K.J. (2010) CXCR3/Ligands Are Significantly Involved in the Tumorigenesis of Basal Cell Carcinomas. The American Journal of Pathology, 176, 2435-2446. https://doi.org/10.2353/ajpath.2010.081059
[30]
Antonelli, A., Ferrari, S.M., Corrado, A., Ferrannini, E. and Fallahi, P. (2014) CXCR3, CXCL10 and Type 1 Diabetes. Cytokine & Growth Factor Reviews, 25, 57-65. https://doi.org/10.1016/j.cytogfr.2014.01.006
[31]
Johnson, M., Li, A., Liu, J., Fu, Z., Zhu, L., Miao, S., et al. (2007) Discovery and Optimization of a Series of Quinazolinone-Derived Antagonists of CXCR3. Bioorganic & Medicinal Chemistry Letters, 17, 3339-3343. https://doi.org/10.1016/j.bmcl.2007.03.106
[32]
Tokunaga, R., Zhang, W., Naseem, M., Puccini, A., Berger, M.D., Soni, S., et al. (2018) CXCL9, CXCL10, CXCL11/CXCR3 Axis for Immune Activation—A Target for Novel Cancer Therapy. Cancer Treatment Reviews, 63, 40-47. https://doi.org/10.1016/j.ctrv.2017.11.007
[33]
Mathysen, D., Van Roy, N., Van Hul, W., Laureys, G., Ambros, P., Speleman, F., et al. (2004) Molecular Analysis of the Putative Tumour-Suppressor Gene EXTL1 in Neuroblastoma Patients and Cell Lines. European Journal of Cancer, 40, 1255-1261. https://doi.org/10.1016/j.ejca.2004.01.013
[34]
Liu, J., Cheng, Y., Zhang, X., Chen, Y., Zhu, H., Chen, K., et al. (2023) Glycosyltransferase Extl1 Promotes CCR7-Mediated Dendritic Cell Migration to Restrain Infection and Autoimmunity. Cell Reports, 42, Article 111991. https://doi.org/10.1016/j.celrep.2023.111991
[35]
Nagel, S., Meyer, C., Eberth, S., Haake, J. and Pommerenke, C. (2022) Downregulation of STAT3 in Epstein-Barr Virus-Positive Hodgkin Lymphoma. Biomedicines, 10, Article 1608. https://doi.org/10.3390/biomedicines10071608
[36]
Koganti, S., Clark, C., Zhi, J., Li, X., Chen, E.I., Chakrabortty, S., et al. (2015) Cellular STAT3 Functions via PCBP2 to Restrain Epstein-Barr Virus Lytic Activation in B Lymphocytes. Journal of Virology, 89, 5002-5011. https://doi.org/10.1128/jvi.00121-15
[37]
Daigle, D., Megyola, C., El-Guindy, A., Gradoville, L., Tuck, D., Miller, G., et al. (2010) Upregulation of STAT3 Marks Burkitt Lymphoma Cells Refractory to Epstein-Barr Virus Lytic Cycle Induction by HDAC Inhibitors. Journal of Virology, 84, 993-1004. https://doi.org/10.1128/jvi.01745-09
[38]
Yang, J., Chatterjee-Kishore, M., Staugaitis, S.M., Nguyen, H., Schlessinger, K., Levy, D.E., et al. (2005) Novel Roles of Unphosphorylated STAT3 in Oncogenesis and Transcriptional Regulation. Cancer Research, 65, 939-947. https://doi.org/10.1158/0008-5472.939.65.3
[39]
Zhu, H., Jian, Z., Zhong, Y., Ye, Y., Zhang, Y., Hu, X., et al. (2021) Janus Kinase Inhibition Ameliorates Ischemic Stroke Injury and Neuroinflammation through Reducing NLRP3 Inflammasome Activation via JAK2/STAT3 Pathway Inhibition. Frontiers in Immunology, 12, Article 714943. https://doi.org/10.3389/fimmu.2021.714943
[40]
Mendez Luque, L.F., Blackmon, A.L., Ramanathan, G. and Fleischman, A.G. (2019) Key Role of Inflammation in Myeloproliferative Neoplasms: Instigator of Disease Initiation, Progression. and Symptoms. Current Hematologic Malignancy Reports, 14, 145-153. https://doi.org/10.1007/s11899-019-00508-w
[41]
Zhang, Q., Zhao, Y., Ma, H., Wang, D., Cui, L., Li, W., et al. (2022) A Study of Ruxolitinib Response-Based Stratified Treatment for Pediatric Hemophagocytic Lymphohistiocytosis. Blood, 139, 3493-3504. https://doi.org/10.1182/blood.2021014860
[42]
Meng, G., Wang, J., Wang, X., Wang, Y. and Wang, Z. (2019) Ruxolitinib Treatment for SR-aGVHD in Patients with EBV-HLH Undergoing Allo-HSCT. Annals of Hematology, 99, 343-349. https://doi.org/10.1007/s00277-019-03864-y
[43]
Ali, S., Choo, S., Hosking, L., Smith, A. and Hughes, T. (2023) A Case of T‐Cell‐Epstein-Barr Virus‐Haemophagocytic Lymphohistiocytosis and Sustained Remission Following Ruxolitinib Therapy. Clinical & Translational Immunology, 12, e1459. https://doi.org/10.1002/cti2.1459
[44]
Liu, J., Fan, Z., Xu, N., Ye, J., Chen, Y., Shao, R., et al. (2023) Ruxolitinib versus Basiliximab for Steroid-Refractory Acute Graft-versus-Host Disease: A Retrospective Study. Annals of Hematology, 102, 2865-2877. https://doi.org/10.1007/s00277-023-05361-9
[45]
Pálmason, R., Lindén, O. and Richter, J. (2015) Case-Report: EBV Driven Lymphoproliferative Disorder Associated with Ruxolitinib. BMC Hematology, 15, Article No. 10. https://doi.org/10.1186/s12878-015-0029-1