|
矿区重金属的形态分布特征与风险评价
|
Abstract:
人为的采矿废水、废弃矿自然风化以及污水灌溉等,导致大量的重金属被赋存到农田土壤中,对人类健康和环境构成潜在风险。本研究旨在阐述矿区土壤中重金属的赋存形态,影响因素和迁移转化途径,并评价其相关风险。矿区土壤矿物组成和pH值是矿区土壤重金属赋存形态差异的主导因素,土壤性质、土壤微生物、动植物、环境因素土地利用等也是影响重金属赋存的重要影响因素。矿区土壤重金属污染评价的方法(内梅罗综合污染指数法、污染负荷指数法)和模型(潜在生态风险评价法、地积累指数法)。此外,我们还讨论了在矿区土壤中重金属赋存形态研究的新方法和思路,新的环境影响风险评估以及未来的研究方向。为进一步有效地降低重金属对矿区土壤的危害奠定了理论基础。
Human activities such as mining wastewater, natural weathering of abandoned mines, and sewage irrigation have resulted in a large amount of heavy metals being deposited into farmland soils, posing potential risks to human health and the environment. This study aims to elucidate the occurrence state, influencing factors, and migration and transformation pathways of heavy metals in mining area soils, and to assess the associated risks. The mineral composition and pH of mining area soils are the dominant factors affecting the differences in heavy metal occurrence state, while soil properties, soil microorganisms, flora and fauna, environmental factors, and land use are also important influencing factors. Methods and models for evaluating heavy metal pollution in mining area soils include the single factor pollution index method, the Nemerow comprehensive pollution index method, and the pollution load index method. Additionally, we discuss new methods and approaches for studying the occurrence state of heavy metals in mining area soils, new environmental impact risk assessments, and future research directions. This lays a theoretical foundation for further effectively reducing the harm of heavy metals to mining area soils.
[1] | Widerlund, A., Shcherbakova, E., Carlsson, E., Holmström, H. and Öhlander, B. (2005) Laboratory Study of Calcite-Gypsum Sludge-Water Interactions in a Flooded Tailings Impoundment at the Kristineberg Zn-Cu Mine, Northern Sweden. Applied Geochemistry, 20, 973-987. https://doi.org/10.1016/j.apgeochem.2004.12.003 |
[2] | 党志, 姚谦, 陈锴, 等. 粤北大宝山矿区污染成因与源头控制技术应用进展[J]. 农业环境科学学报, 2021, 40(7): 1377-1386. |
[3] | 蔡永兵, 孙延康, 孟凡德, 等. 典型金矿区入湾河流重金属的时空分布特征及风险评价[J]. 环境化学, 2021, 40(4): 1167-1178. |
[4] | Zhang, W., Xin, C. and Yu, S. (2023) A Review of Heavy Metal Migration and Its Influencing Factors in Karst Groundwater, Northern and Southern China. Water, 15, Article No. 3690. https://doi.org/10.3390/w15203690 |
[5] | Demir, A. (2020) Speciation, Risk Assessment and Bioavailability of Metals in the Agricultural Soils of the Göksu Delta, Turkey. Soil and Sediment Contamination: An International Journal, 30, 292-313. https://doi.org/10.1080/15320383.2020.1839740 |
[6] | Din, I.U., Muhammad, S. and Rehman, I.U. (2022) Heavy Metal(loid)s Contaminations in Soils of Pakistan: A Review for the Evaluation of Human and Ecological Risks Assessment and Spatial Distribution. Environmental Geochemistry and Health, 45, 1991-2012. https://doi.org/10.1007/s10653-022-01312-x |
[7] | Zhang, J., Tian, S., Zeng, J. and Liu, Z. (2023) Analysis of the Sources and Risk Assessment of Heavy Metals in the Soil of an Ion-Type Rare Earth Mining Area in Southern Jiangxi. Eurasian Soil Science, 56, 1522-1531. https://doi.org/10.1134/s106422932360077x |
[8] | Favas, P.J.C., Pratas, J., Gomes, M.E.P. and Cala, V. (2011) Selective Chemical Extraction of Heavy Metals in Tailings and Soils Contaminated by Mining Activity: Environmental Implications. Journal of Geochemical Exploration, 111, 160-171. https://doi.org/10.1016/j.gexplo.2011.04.009 |
[9] | Meima, J.A., Graupner, T. and Rammlmair, D. (2012) Modeling the Effect of Stratification on Cemented Layer Formation in Sulfide-Bearing Mine Tailings. Applied Geochemistry, 27, 124-137. https://doi.org/10.1016/j.apgeochem.2011.09.024 |
[10] | Davidson, C.M., Duncan, A.L., Littlejohn, D., Ure, A.M. and Garden, L.M. (1998) A Critical Evaluation of the Three-Stage BCR Sequential Extraction Procedure to Assess the Potential Mobility and Toxicity of Heavy Metals in Industrially-Contaminated Land. Analytica Chimica Acta, 363, 45-55. https://doi.org/10.1016/s0003-2670(98)00057-9 |
[11] | Ribeta, I., Ptacek, C.J., Blowes, D.W. and Jambor, J.L. (1995) The Potential for Metal Release by Reductive Dissolution of Weathered Mine Tailings. Journal of Contaminant Hydrology, 17, 239-273. https://doi.org/10.1016/0169-7722(94)00010-f |
[12] | Baba, A.A. and Adekola, F.A. (2011) Comparative Analysis of the Dissolution Kinetics of Galena in Binary Solutions of HCl/FeCl3 and HCl/H2O2. International Journal of Minerals, Metallurgy, and Materials, 18, 9-17. https://doi.org/10.1007/s12613-011-0393-1 |
[13] | Blowes, D.W., Reardon, E.J., Jambor, J.L. and Cherry, J.A. (1991) The Formation and Potential Importance of Cemented Layers in Inactive Sulfide Mine Tailings. Geochimica et Cosmochimica Acta, 55, 965-978. https://doi.org/10.1016/0016-7037(91)90155-x |
[14] | Yang, Q., Li, Z., Lu, X., Duan, Q., Huang, L. and Bi, J. (2018) A Review of Soil Heavy Metal Pollution from Industrial and Agricultural Regions in China: Pollution and Risk Assessment. Science of The Total Environment, 642, 690-700. https://doi.org/10.1016/j.scitotenv.2018.06.068 |
[15] | Cui, X., Geng, Y., Sun, R., Xie, M., Feng, X., Li, X., et al. (2021) Distribution, Speciation and Ecological Risk Assessment of Heavy Metals in Jinan Iron & Steel Group Soils from China. Journal of Cleaner Production, 295, Article ID: 126504. https://doi.org/10.1016/j.jclepro.2021.126504 |
[16] | Zhong, X., Chen, Z., Li, Y., Ding, K., Liu, W., Liu, Y., et al. (2020) Factors Influencing Heavy Metal Availability and Risk Assessment of Soils at Typical Metal Mines in Eastern China. Journal of Hazardous Materials, 400, Article ID: 123289. https://doi.org/10.1016/j.jhazmat.2020.123289 |
[17] | Li, H. and Ji, H. (2017) Chemical Speciation, Vertical Profile and Human Health Risk Assessment of Heavy Metals in Soils from Coal-Mine Brownfield, Beijing, China. Journal of Geochemical Exploration, 183, 22-32. https://doi.org/10.1016/j.gexplo.2017.09.012 |
[18] | Liu, G., Wang, J., Zhang, E., Hou, J. and Liu, X. (2016) Heavy Metal Speciation and Risk Assessment in Dry Land and Paddy Soils near Mining Areas at Southern China. Environmental Science and Pollution Research, 23, 8709-8720. https://doi.org/10.1007/s11356-016-6114-6 |
[19] | Anju, M. and Banerjee, D.K. (2010) Comparison of Two Sequential Extraction Procedures for Heavy Metal Partitioning in Mine Tailings. Chemosphere, 78, 1393-1402. https://doi.org/10.1016/j.chemosphere.2009.12.064 |
[20] | Conesa, H.M., Robinson, B.H., Schulin, R. and Nowack, B. (2008) Metal Extractability in Acidic and Neutral Mine Tailings from the Cartagena-La Unión Mining District (SE Spain). Applied Geochemistry, 23, 1232-1240. https://doi.org/10.1016/j.apgeochem.2007.11.013 |
[21] | Hayes, S.M., White, S.A., Thompson, T.L., Maier, R.M. and Chorover, J. (2009) Changes in Lead and Zinc Lability during Weathering-Induced Acidification of Desert Mine Tailings: Coupling Chemical and Micro-Scale Analyses. Applied Geochemistry, 24, 2234-2245. https://doi.org/10.1016/j.apgeochem.2009.09.010 |
[22] | Li, F., Wichmann, K. and Otterpohl, R. (2009) Review of the Technological Approaches for Grey Water Treatment and Reuses. Science of The Total Environment, 407, 3439-3449. https://doi.org/10.1016/j.scitotenv.2009.02.004 |
[23] | 崔丽蓉, 叶丽丽, 陈永山, 等. 广西露天铝土矿区复垦地土壤重金属空间分布特征及风险评价[J]. 生态环境学报, 2021, 30(11): 2232-2243. |
[24] | 郭世鸿, 侯晓龙, 邱海源, 等. 基于形态学分析铅锌矿不同功能区土壤重金属元素的分布特征及污染评价[J]. 地质通报, 2015, 34(11): 2047-2053. |
[25] | Ghasemi, M., Bayat, M. and Ghasemi, M. (2023) Experimental Study on Mechanical Behavior of Sand Improved by Polyurethane Foam. Experimental Techniques, 47, 1201-1211. https://doi.org/10.1007/s40799-023-00633-5 |
[26] | Lei, L., Song, C., Xie, X., Li, Y. and Wang, F. (2010) Acid Mine Drainage and Heavy Metal Contamination in Groundwater of Metal Sulfide Mine at Arid Territory (BS Mine, Western Australia). Transactions of Nonferrous Metals Society of China, 20, 1488-1493. https://doi.org/10.1016/s1003-6326(09)60326-5 |
[27] | 罗谦, 李英菊, 秦樊鑫, 等. 铅锌矿区周边耕地土壤团聚体重金属污染状况及风险评估[J]. 生态环境学报, 2020, 29(3): 605-614. |
[28] | Ahn, Y., Yun, H., Pandi, K., Park, S., Ji, M. and Choi, J. (2019) Heavy Metal Speciation with Prediction Model for Heavy Metal Mobility and Risk Assessment in Mine-Affected Soils. Environmental Science and Pollution Research, 27, 3213-3223. https://doi.org/10.1007/s11356-019-06922-0 |
[29] | Kumar, V., Sharma, A., Kaur, P., Singh Sidhu, G.P., Bali, A.S., Bhardwaj, R., et al. (2019) Pollution Assessment of Heavy Metals in Soils of India and Ecological Risk Assessment: A State-of-the-Art. Chemosphere, 216, 449-462. https://doi.org/10.1016/j.chemosphere.2018.10.066 |
[30] | 余国营, 吴燕玉. 土壤环境中重金属元素的相互作用及其对吸持特性的影响[J]. 环境化学, 1997(1): 30-36. |
[31] | 蔡美芳, 党志. 磁黄铁矿氧化机理及酸性矿山废水防治的研究进展[J]. 环境污染与防治, 2006(1): 58-61. |
[32] | 陆泗进, 王业耀, 何立环. 风险评价代码法对农田土壤重金属生态风险的评价[J]. 环境化学, 2014, 33(11): 1857-1863. |
[33] | Hakanson, L. (1980) An Ecological Risk Index for Aquatic Pollution Control. A Sedimentological Approach. Water Research, 14, 975-1001. https://doi.org/10.1016/0043-1354(80)90143-8 |
[34] | Dold, B. (2003) Speciation of the Most Soluble Phases in a Sequential Extraction Procedure Adapted for Geochemical Studies of Copper Sulfide Mine Waste. Journal of Geochemical Exploration, 80, 55-68. https://doi.org/10.1016/s0375-6742(03)00182-1 |
[35] | Zhang, Y., Wang, Z., Zhang, Z., Sun, Q., Luo, Y., Jia, W., et al. (2022) Pollution Characteristics, Spatial Distribution, and Health Risk Assessment of Soil Heavy Metal(loid)s in Panxi District, Southwest China: A Typical Industrial City. Soil and Sediment Contamination: An International Journal, 32, 518-537. https://doi.org/10.1080/15320383.2022.2105812 |
[36] | 何东明, 王晓飞, 陈丽君, 等. 基于地积累指数法和潜在生态风险指数法评价广西某蔗田土壤重金属污染[J]. 农业资源与环境学报, 2014, 31(2): 126-131 |
[37] | Tomlinson, D.L., Wilson, J.G., Harris, C.R. and Jeffrey, D.W. (1980) Problems in the Assessment of Heavy-Metal Levels in Estuaries and the Formation of a Pollution Index. Helgoländer Meeresuntersuchungen, 33, 566-575. https://doi.org/10.1007/bf02414780 |