Ynones, also known as α, β-acetylenic ketones, have been widespread used in modern synthetic organic chemistry. They exist in biologically active compounds, and are used as vital building blocks in complex molecule synthesis. Consequently, a number of methodologies involving ynones have been developed to access a wide range scaffold using this simple building block. In this paper, the synthesis of a ferrocene tertiary amine cyclopalladium compounds and its application in Suzuki & Sonogashira reactions were our main works, to achieve the goal of discovering new ynones. The contents including the following three aspects: (1) The Schiff bases synthesized by ferrocene methylamine and cinnamaldehyde were underwent sodium borohydride reduction, then the corresponding cyclopalladium compounds were obtained by Mannich reaction and cyclopalladation. The structures of products were characterized by NMR spectroscopy and X-ray single crystal diffraction. (2) Suzuki coupling reactions between 3,4-dimethoxyphenylboronic acid and a series of aryl halides were studied, and several biphenyl coupling products were characterized by NMR spectroscopy. Besides, we also optimized the reaction conditions and expanded the range of substrates. (3) Sonogashira coupling reactions between phenylacetylene and series of acid chlorides were discovered, and several ynones derivatives were characterized by NMR spectroscopy. We also optimized the conditions of reaction and expanded the range of substrates.
Cite this paper
Yuan, Q. (2017). Synthesis of Ferrocene Tertiary Amine Cyclopalladium Compounds and Its Application in Suzuki and Sonogashira Reactions. Open Access Library PrePrints, 3, e181. doi: http://dx.doi.org/10.4236/oalib.preprints.1200181.
Whittaker, R.E., Dermenci, A., Dong, G. (2016) Synthesis of Ynones and Recent Application in Transition-metal-catalyzed Reactions. Synthesis-stuttgart, 48, 161-183.
Pan, X.Y. (2012) PdCl2/FeCl2-Catalyzed cascade eyclization reaction of alkyones: the synthesis of complicated compounds via C-H/C-C bond activation. Ph.D. Dissertation, Institutes Of Technology Of South China, Guangzhou.
Pedersen, J., Bowman, W., Elsegood, M., et al. (2005) Synthesis of Ellipticine: a Radical Cascade Protocol to Aryl- and Heteroaryl-annulated[b]carbazoles. J. Org. Chem., 70, 10615-10618.
Bleicher, L., Cosford, N., Herbaut, A., et al. (1998) A Practical and Efficient Synthesis of the Selective Neuronal Acetylcholine-gated Ion Channel Agonist (s)-(-)-5-ethynyl-3-(1-methyl-2-pyrrolidinyl)pyridine Maleate (sib-1508y). J. Org. Chem., 63, 1109-1118.
Bakherad, M., Keivanloo, A., Bahramian, B., et al. (2011) Synthesis of Ynones Via Recyclable Polystyrene-supported Palladium(0) Complex Catalyzed Acylation of Terminal Alkynes with Acyl Chlorides Under Copper-and Solvent-free Conditions. Synlett, 3, 311-314.
T., Z., Zhang J.S. (2016) DFT study on the synthesis of off olefins from chain alkyne ketone catalyzed by Pd (II). Journal of Hebei Normal University (Natural Science Edition), 139-148.
Karabiyikoglu, S., Kelgokmen, Y., Zora, M. (2015) Facile Synthesis of Iodopyridines From N-propargylic β-enaminones Via Iodine-mediated Electrophilic Cyclization. Tetrahedron, 71, 4324-4333.
Liu, J., Wei, W., Zhao, T., et al. (2016) Iodine/copper Iodide-mediated C-H Functionalization: Synthesis of Imidazo[1,2-a]pyridines and Indoles From N-aryl Enamines. J. Org. Chem., 81, 9326-9336.
Santra, S., Dhara, K., Ranjan, P., et al. (2011) A Supported Palladium Nanocatalyst for Copper Free Acyl Sonogashira Reactions: One-Pot Multicomponent Synthesis of N-containing Heterocycles. Green Chem., 13, 3238-3247.
Ye H.D., Tong H.D., Zhou R.Y. et al. (2012) Synthesis and application of deuterated two ferrocene ketone in mechanism research. Journal of Jiangxi Normal University (Natural Science Edition), 6, 558-561.
Cassar, L. (1975) Synthesis of Aryl-and Vinyl-substituted Acetylene Derivatives By the Use of Nickel and Palladium Complexes. J. Organomet. Chem., 93, 253-257.
Elshazly, M., Barve, B.D., (2014) Korinek M, et al. Insights on the Isolation, Biological Activity and Synthetic Protocols of Enyne Derivatives. Curr. Top. Med. Chem., 14, 1076-1093.
Essoumhi, A., Kazzouli, S.E., (2014) Bousmina M. Review on Palladium-containing Perovskites: Synthesis, Physico-chemical Properties and Applications in Catalysis. ChemInform, 45, 2012-2023(12).
Wang, L., Li, J., Yang, H., et al. (2012) Selective Oxidation of Unsaturated Alcohols Catalyzed by Sodium Nitrite and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone with Molecular Oxygen under Mild Conditions. J. Org. Chem., 77, 790-794.
Kobayashi, T., Tanaka, M. (1981) Carbonylation of organic halides in the presence of terminal acetylenes; novel acetylenic ketone synthesis. J. Chem. Soc. Chem. Commun., 333-334.
Miyaura, N., Suzuki, A. (1979) Stereoselective Synthesis of Arylated (e)-alkenes By the Reaction of Alk-1-enylboranes with Aryl Halides in the Presence of Palladium Catalyst. J. Chem. Soc., Chem. Commun., 19, 866-867.
Ishiyama, T., Kizaki, H., Miyaura, N., et al. (1993) Synthesis of Unsymmetrical Biaryl Ketones via Palladium-catalyzed Carbonylativecross-coupling Reaction of Arylboronic Acids with Iodoarenes. Tetrahedron Lett, 4, 7595-7598.
Han, W., Zhong Y.Z., Jin F.L. et al. (2015) Recent advances in Suzuki carbonylation reaction. Journal of Nanjing Normal University (Natural Science Edition), 38, 1-13, 30.
Qian, H., Yin, Z., Zhang, T., et al. (2014) Palladacycle From Cyclometalation of the Unsubstituted Cyclopentadienyl Ring in Ferrocene: Synthesis, Characterization, Theoretical Studies, and Application to Suzuki–miyaura Reaction. Organometallics, 33, 6241-6246.