The present work aims to elaborate a review of the geochemical aspects used to compose the Raw Water Quality Index (WQI), highlighting lake environments and their importance for management practices. This paper is a bibliographic review based on specialized scientific and legislative literature conducted between April 2016 and March 2019. The scientific articles were selected by searching the Scielo database and the Periódicos Capes and the database search was performed using the terminologies registered in the Descriptors (Thesaurus) or Keywords (Scopus and Web of Science) for geosciences and environmental sciences. The WQI is the main quality index used in the country and is calculated based on nine parameters (water temperature, pH, dissolved oxygen, total residue, biochemical oxygen demand, thermotolerant coliforms, total nitrogen, total phosphorus and turbidity). The values determined through the calculation of the WQI are classified in ranges that define the water quality, which varies between different Brazilian states. Among its mishaps, it is noteworthy that the WQI does not analyze other factors important for public supply, such as toxic substances (eg: heavy metals, pesticides, organic compounds), pathogenic protozoa and substances that interfere with the organoleptic properties of water, which are under other management tools. The systemic model of water resources management adopted for Brazil is still in the process of improvement, because it still works through a decentralized system where the public authorities, at different levels, have an active voice, thus requiring the commitment to make a long-term monitoring based on a reliable geochemical analysis, so that an integrated management can be carried out, allowing the synthesis and characterization of the current state and management criteria of lake environments, with the main objective of facing the conservation challenges allied to sustainable use of its resources.
Cite this paper
Silva, A. , Azevedo, I. and Cruz, M. (2020). The Importance of Geochemistry in the Management of Lake Environments: Analysis of Parameters Composing the Water Quality Index (Wqi). Open Access Library PrePrints, 4, e261. doi: http://dx.doi.org/10.4236/oalib.preprints.1200261.
Silva, J. A. A.; Nobre, A. D.; Manzatto, C. V.; Joly, C. A.; Rodrigues, R. R.; Skorupa, L. A.; Nobre, C. A.; Ahrens, S.; May, P. H.; Sá, T. D. A.; Cunha, M. C.; Rech Filho, E. L. (2011) O Código Florestal e a ciência: Contribui??es para o diálogo. S?o Paulo: Sociedade Brasileira Para o Progresso da Ciência, SBPC; e Academia Brasileira de Ciências, ABC, 124p.
Lobato da Costa, F. J. (2003) Estratégias de gerenciamento dos recursos hídricos no Brasil: áreas de coopera??o com o Banco Mundial. Série água Brasil n. 1. Banco Mundial. Brasília.
BRASIL. Ministério do Meio Ambiente; Agência Nacional de águas. Programa das Na??es Unidas para o Meio Ambiente. (2007) Gest?o dos recursos hídricos no Brasil: evolu??o e “estado da arte”. GEO BRASIL: recursos hídricos. Brasília.
Aleksander-Kwaterczak, U.; Zdechlik, R. (2016) Hydrogeochemical characteristics of interstitial water and overlying water in the lacustrine environment. Environmental Earth Sciences, v. 75, n. 20, p. 1352.
Cudischevitch, C., Fontanetto, R., Oliveira, S. (2012) Gest?o e políticas públicas para bacias hidrográficas. Academia Brasileira de Ciência. http://www.abc.org.br/article.ppH3?id_article=2168
MOE, S. J.; HAANDE, S.; COUTURE, R. M. Climate change, cyanobacteria blooms and ecological status of lakes: A Bayesian network approach. Ecological Modelling, v. 337, 2016, p. 330-347.
Shadrin, N. V. (2017) Hypersaline lakes as polyextreme habitats for life. Introduction to Salt Lake Sciences. Science Press, Beijing, China, p. 173-178.
Duncan, S. et al. (2019) Dynamics of residential water-soluble organic gases: Insights into sources and sinks. Environmental science & technology, v. 53, n. 4, p. 1812-1821.
Hanson, P. C., Carpenter, S. R., Armstrong, D. E., Stanley, E. H., & Kratz, T. K. (2006) Lake dissolved inorganic carbon and dissolved oxygen: changing drivers from days to decades. Ecological Monographs, v. 76, n. 3, p. 343-363.
Hachich, E. M. et al. (2012) Comparison of thermotolerant coliforms and Escherichia coli densities in freshwater bodies. Braz. J. Microbiol. S?o Paulo, v. 43, n. 2, p. 675-681. http://dx.doi.org/10.1590/S1517-83822012000200032.
Hodge, J. et al. (2016) Assessing the Association between Thermotolerant Coliforms in Drinking Water and Diarrhea: An Analysis of Individual–Level Data from Multiple Studies. Environmental health perspectives, v. 124, n. 10, p. 1560-1567.
SMITH, M., MINTEER, C., LAKE, E.C., WHEELER, G.S., TIPPING, P.W. (2016) Indirect ecological effects in invaded landscapes: Spillover and spillback from biological control agents to native analogues. Ecological Society of America (ESA), https://eco.confex.com/eco/2016/preliminaryprogram/abstract_59794.htm
Mirzaei, N. et al. (2015) Survey of effective parameters (water sources, seasonal variation and residual chlorine) on presence of thermotolerant coliforms bacteria in different drinking water resources. International Journal of Pharmacy and Technology, v. 7, n. 3, p. 9680-9689.
Robertson, W. et al. (1998) Evaluation of a rapid method for E coli and thermotolerant coliforms in recreational waters. Water science and technology, v. 38, n. 12, p. 87.
Maurer, C. P. et al. (2015) Adenovirus, enterovirus and thermotolerant coliforms in recreational waters from Lake Guaíba beaches, Porto Alegre, Brazil. Journal of water and health, p. wh2015277.
Biudes, J. F. V.; Camargo, A. F. (2008) M. Estudos dos fatores limitantes à produ??o primária por macrófitas aquáticas no Brasil. Oecologia Brasiliensis, v. 12, n. 1, p. 2.
Ochocka, A.; Pasztaleniec, A. (2016) Sensitivity of plankton indices to lake trophic conditions. Environmental Monitoring and Assessment, v. 188, n. 11, p. 622.
Trussell, R. P. (1972) The Percent Un-Ionized Ammonia in Aqueous Ammonia Solutions at Different p H Levels and Temperatures. Journal of the Fisheries Board of Canada, v. 29, n. 10, p. 1505-1507.
Gong, L. J., Yang, X. F., Xiong, B. X., Li, G. P., & Chen, X. L. (2012) Study on Nitrogen, Phosphor and Chemical Oxygen Demand of Differnt Categories of Aquaculture Lakes by Means of Principal Component Analysis, Factor Analysis and Cluster Analysis. In: Advanced Materials Research. Trans Tech Publications, p. 369-377.
American Public Health Association (APHA). (2012) Standard methods for the examination of water and wastewater. 22 nd ed., Washington, American Public Health Association Pub., 1935 p.
Brand?o, C. J. et al. (2011) Guia nacional de coleta e preserva??o de amostras: água, sedimento, comunidades aquáticas e efluentes líquidos. S?o Paulo: CETESB.
Verones, F. et al. (2010) Characterization factors for thermal pollution in freshwater aquatic environments. Environmental science & technology, v. 44, n. 24, p. 9364-9369.
Allen, D. C.; Vaughn, C. C. (2011) Density‐dependent biodiversity effects on physical habitat modification by freshwater bivalves. Ecology, v. 92, n. 5, p. 1013-1019.
Min, K. R.; Zimmer, M. N.; Rickard, A. H. (2010) Physicochemical parameters influencing coaggregation between the freshwater bacteria Sphingomonas natatoria 2.1 and Micrococcus luteus 2.13. Biofouling, v. 26, n. 8, p. 931-940.
Zlatanovi?, L.; Van Der Hoek, J. P.; Vreeburg, J. H. G. (2017) An experimental study on the influence of water stagnation and temperature change on water quality in a full-scale domestic drinking water system. Water research, v. 123, p. 761-772.
Gloria, L. P.; Horn, B. C.; Hilgemann, M. (2017) Avalia??o da qualidade da água de bacias hidrográficas através da ferramenta do índice de Qualidade da água-IQA. Revista Caderno Pedagógico, v. 14, n. 1.
Kindlein, C. P. (2010) Determina??o do teor de nitratos e nitritos na água de abastecimento do Município de Nova Santa Rita. v. 200. http://biblioteca. unilasalle. edu. br/docs_online
Lamparelli, M. C. (2014) Graus de trofia em corpos d'água do estado de S?o Paulo: avalia??o dos métodos de monitoramento. [Tese de Doutorado]. Universidade de S?o Paulo.
Garcez, L. N. (2004) Manual de procedimentos e técnicas laboratoriais voltado para análises de águas e esgotos sanitário e industrial. S?o Paulo: Escola Politécnica de Universidade de S?o Paulo, 105p.