全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Utilization of an ultrasound beam steering angle for measurements of tissue displacement vector and lateral displacement

DOI: http://dx.doi.org/10.2147/RMI.S11407

Keywords: a steering angle, lateral modulation, displacement vector measurement, lateral displacement measurement

Full-Text   Cite this paper   Add to My Lib

Abstract:

ilization of an ultrasound beam steering angle for measurements of tissue displacement vector and lateral displacement Original Research (4457) Total Article Views Authors: Chikayoshi Sumi Published Date September 2010 Volume 2010:3 Pages 61 - 81 DOI: http://dx.doi.org/10.2147/RMI.S11407 Chikayoshi Sumi Department of Information and Communication Sciences, Faculty of Science and Technology, Sophia University, Tokyo, Japan Abstract: A number of ultrasonic displacement/velocity measurement methods have been extensively developed for measurements of blood flow, tissue motion, and strain. Lateral modulation (LM) methods have also been reported using steered, crossed beams, and these methods permit measurements of displacement vectors. In this report, a new beam steering method for the transmission and reception of ultrasound is proposed, which can enable measurements of lateral displacements and of arbitrary displacement vectors with a very high degree of accuracy. Because this beam steering method uses only a steering angle, this method is referred to as ASTA. With ASTA, the number of available methods to obtain a displacement vector measurement is limited to previously developed block-matching methods, such as the multidimensional cross-spectrum phase gradient method, and the multidimensional autocorrelation method (MAM) and the multidimensional Doppler method (MDM) using a block-matching method (the methods using block matching are referred to as MAMb and MDMb, respectively). Being dependent on the measurement method, only a lateral displacement measurement can be made even if the methods are multidimensional, ie, previously developed MAM and MDM using a moving average and a mirror setting of the obtained steered beams, and one-dimensional (1D), such as an autocorrelation method. Considerations of beamforming schemes using LM and ASTA show that the simple ASTA beamforming method increases capabilities for real-time measurements and requires a small physical aperture when compared with LM. For lateral displacement measurements (eg, blood flow in a carotid artery), a lateral coordinate must correspond to the direction of the target’s lateral motion, and the steering angle used is as large as possible to increase the measurement accuracy of a lateral displacement. However, for displacement vector measurements to describe complex tissue motions (eg, cardiac motion), if the axial coordinate corresponds to the depth direction in the target tissue, an ideal steering angle will be 45°. A two-dimensional echo simulation shows that for the block-matching methods, LM yields more accurate displacement vector measurements than ASTA, whereas with MAM and MDM using a moving average and a mirror setting and 1D methods, ASTA yields more accurate lateral displacement measurements than LM. The block-matching method requires fewer calculations than the moving average method; however, a lower degree of accuracy is obtained. As with LM, multidimensional measurement met

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133