全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

STRONG CONSISTENCY OF ESTIMATORS IN PARTIAL LINEAR MODEL UNDER NA SAMPLES
NA样本部分线性模型估计的强相合性

Keywords: Partial linear model,NA random variable,least-squares estimator,strong consistency
部分线性模型
,NA变量,最小二乘估计,强相合性.

Full-Text   Cite this paper   Add to My Lib

Abstract:

Consider the heteroscedastic regression model:$Y^{(j)}(x_{\rm in},t_{\rm in})=t_{\rm in}\beta+g(x_{\rm in})+\sigma_{\rm in}e^{(j)}(x_{\rm in}), 1\leq j\leq m, 1\leq i\leq n$, where $\sigma_{\rm in}^{2}=f(u_{\rm in})$, $(x_{\rm in},t_{\rm in},u_{\rm in})$ are fixed design points, $\beta$ is an unknown parameter, $g(\cdot)$ and $f(\cdot)$ are unknown functions, and the errors $\{e^{(j)}(x_{\rm in})\}$ are mean zero NA random variables. The strong consistency for least-squares estimator and weighted least-squares estimator of $\beta$ is studied based on the family of nonparametric estimates of $g(\cdot)$ and $f(\cdot)$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133