Based on the atmospheric regional climate model HIRHAM5, the single-column model version HIRHAM5-SCM was developed and applied to investigate the performance of a relative humidity based (RH-Scheme) and a prognostic statistical cloud scheme (PS-Scheme) in the central Arctic. The surface pressure as well as dynamical tendencies of temperature, specific humidity, and horizontal wind were prescribed from the ERA-Interim data set to enable the simulation of a realistic annual cycle. Both modeled temperature and relative humidity profiles were validated against radio soundings carried out on the 35th North Pole drifting station (NP-35). Simulated total cloud cover was evaluated with NP-35 and satellite-based ISCCP-D2 and MODIS observations. The more sophisticated PS-Scheme was found to perform more realistically and matched the observations better. Nevertheless, the model systematically overestimated the monthly averaged total cloud cover. Sensitivity studies were conducted to assess the effect of modified “tuning” parameters on cloud-related model variables. Two tunable parameters of the PS-Scheme and six tuning parameters contained in the cloud microphysics were analyzed. Lower values of the PS-Scheme adjustment parameter q0, which defines the shape of the symmetric beta distribution (acting as probability density function), as well as higher values of the cloud water threshold CW min or autoconversion rate γ 1 are able to reduce the overestimation of Arctic clouds. Furthermore, a lower cloud ice threshold γ thr, which controls the Bergeron–Findeisen process, improves model cloudiness and the ratio of liquid to solid water content.
References
[1]
Schneider, S.H. Cloudiness as a global climate feedback mechanism: The effects on the radiation balance and surface temperature of variations in cloudiness. J. Atmos. Sci. 1972, 29, 1413–1422, doi:10.1175/1520-0469(1972)029<1413:CAAGCF>2.0.CO;2.
[2]
Minnett, P.J. The influence of solar zenith angle and cloud type on cloud radiative forcing at the surface in the Arctic. J. Clim. 1999, 12, 147–158, doi:10.1175/1520-0442-12.1.147.
[3]
Shupe, M.D.; Intrieri, J.M. Cloud radiative forcing of the Arctic surface: The influence of cloud properties, surface albedo, and solar zenith angle. J. Clim. 2004, 17, 616–628, doi:10.1175/1520-0442(2004)017<0616:CRFOTA>2.0.CO;2.
[4]
Hu, R.M.; Blanchet, J.P.; Girard, E. The effect of aerosol on surface cloud radiative forcing in the Arctic. Atmos. Chem. Phys. Discuss. 2005, 5, doi:10.5194/acpd-5-9039-2005.
[5]
Gorodetskaya, I.V.; Tremblay, L.B.; Liepert, B.; Cane, M.A.; Cullather, R.I. The influence of cloud and surface properties on the Arctic ocean shortwave radiation budget in coupled models. J. Clim. 2008, 21, doi:10.1175/2007JCLI1614.1.
[6]
Lee, S.S.; Donner, L.J.; Phillips, V.T.J. Sensitivity of aerosol and cloud effects on radiation to cloud types: Comparison between deep convective clouds and warm stratiform clouds over one-day period. Atmos. Chem. Phys. 2009, 9, doi:10.5194/acp-9-2555-2009.
[7]
Ramanathan, V.; Cess, R.D.; Harrison, E.F.; Minnis, P.; Barkstrom, B.R.; Ahmad, E.; Hartmann, D. Cloud-radiative forcing and climate: Results from the earth radiation budget experiment. Science 1989, 243, 57–63.
[8]
Walsh, J.E.; Chapman, W.L. Arctic cloud-radiation-temperature associations in observational data and atmospheric reanalyses. J. Clim. 1998, 11, 3030–3045, doi:10.1175/1520-0442(1998)011<3030:ACRTAI>2.0.CO;2.
[9]
Intrieri, J.M.; Fairall, C.W.; Shupe, M.D.; Persson, P.O.G.; Andreas, E.L.; Guest, P.S.; Moritz, R.E. An annual cycle of Arctic surface cloud forcing at SHEBA. J. Geophys. Res. 2002, 107, doi:10.1029/2000JC000439.
[10]
Kahl, J.D.; Martinez, D.A.; Zaitseva, N.A. Long-term variability in the low-level inversion layer over the Arctic ocean. Int. J. Climatol. 1996, 16, 1297–1313, doi:10.1002/(SICI)1097-0088(199611)16:11<1297::AID-JOC86>3.0.CO;2-T.
[11]
Zhang, Y.; Seidel, D.J.; Golaz, J.C.; Deser, C.; Tomas, R.A. Climatological characteristics of Arctic and Antarctic surface-based inversions. J. Clim. 2011, 24, doi:10.1175/2011JCLI4004.1.
[12]
Mauritsen, T.; Sedlar, J.; Tjernstr?m, M.; Leck, C.; Martin, M.; Shupe, M.; Sjogren, S.; Sierau, B.; Persson, P.O.G.; Brooks, I.M.; et al. An Arctic CCN-limited cloud-aerosol regime. Atmos. Chem. Phys. 2011, 11, doi:10.5194/acp-11-165-2011.
[13]
Herman, G.; Goody, R. Formation and persistence of summertime Arctic stratus clouds. J. Atmos. Sci. 1976, 33, 1537–1553, doi:10.1175/1520-0469(1976)033<1537:FAPOSA>2.0.CO;2.
[14]
Curry, J.A.; Rossow, W.B.; Randall, D.; Schramm, J.L. Overview of Arctic cloud and radiative characteristics. J. Clim. 1996, 9, 1731–1764, doi:10.1175/1520-0442(1996)009<1731:OOACAR>2.0.CO;2.
[15]
Intrieri, J.M.; Shupe, M.D.; Uttal, T.; McCarty, B.J. An annual cycle of Arctic cloud characteristics observed by radar and lidar at SHEBA. J. Geophys. Res. 2002, 107, doi:10.1029/2000JC000423.
[16]
Kay, J.E.; Gettelman, A. Cloud influence on and response to seasonal Arctic sea ice loss. J. Geophys. Res. 2009, 114, doi:10.1029/2009JD011773.
[17]
Eastman, R.; Warren, S.G. Interannual variations of Arctic cloud types in relation to sea ice. J. Clim. 2010, 23, doi:10.1175/2010JCLI3492.1.
[18]
Eastman, R.; Warren, S.G. Arctic cloud changes from surface and satellite observations. J. Clim. 2010, 23, doi:10.1175/2010JCLI3544.1.
[19]
Walsh, J.E.; Kattsov, V.M.; Chapman, W.L.; Govorkova, V.; Pavlova, T. Comparison of Arctic climate simulations by uncoupled and coupled global models. J. Clim. 2002, 15, 1429–1446, doi:10.1175/1520-0442(2002)015<1429:COACSB>2.0.CO;2.
[20]
Inoue, J.; Liu, J.; Pinto, J.O.; Curry, J.A. Intercomparison of Arctic regional models: Modeling clouds and radiation for SHEBA in May 1998. J. Clim. 2006, 19, doi:10.1175/JCLI3854.1.
[21]
Tjernstr?m, M.; Sedlar, J.; Shupe, M.D. How well do regional climate models reproduce radiation and clouds in the Arctic? An evaluation of ARCMIP simulations. J. Appl. Meteorol. Climatol. 2008, 47, doi:10.1175/2008JAMC1845.1.
[22]
Birch, C.E.; Brooks, I.M.; Tjernstr?m, M.; Milton, S.F.; Earnshaw, P.; Soderberg, S.; Persson, P.O.G. The performance of a global and mesoscale model over the central Arctic ocean during late summer. J. Geophys. Res. 2009, 114, doi:10.1029/2008JD010790.
[23]
Arking, A. The radiative effects of clouds and their impact on climate. Bull. Am. Meteorol. Soc. 1991, 71, 795–813, doi:10.1175/1520-0477(1991)072<0795:TREOCA>2.0.CO;2.
[24]
Cess, R.D.; Zhang, M.H.; Ingram, W.J.; Potter, G.L.; Alekseev, V.; Barker, H.W.; Cohen-Solal, E.; Colman, R.A.; Dazlich, D.A.; Del Genio, A.D.; et al. Cloud feedback in atmospheric general circulation models: An update. J. Geophys. Res. 1996, 101, doi:10.1029/96JD00822.
[25]
Solomon, S.; Qin, D.; Manning, M.; Chen, Z.; Marquis, M.; Averyt, K.B.; Tignor, M.; Miller, H.L. Climate Change 2007: The Physical Science Basis : Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2007; pp. 629–640.
[26]
Curry, J.A.; Pinto, J.O.; McInnes, K.L. Modeling the Summertime Arctic Cloudy Boundary Layer. In Proceedings of the Fifth Atmospheric Radiation Measurement (ARM) Science Team Meeting; Department of Energy/Atmospheric Radiation Measurement (DOE/ARM), San Diego, CA, USA, 19–23 March 1995; pp. 63–67.
[27]
Morrison, H.; Pinto, J.O. Intercomparison of bulk cloud microphysics schemes in mesoscale simulations of springtime Arctic mixed-phase stratiform clouds. Mon. Weather Rev. 2006, 134, 1880–1900, doi:10.1175/MWR3154.1.
Inoue, J.; Kosovic, B.; Curry, J.A. Evolution of a storm-driven cloudy boundary layer in the Arctic. Bound. Layer Meteorol. 2005, 117, doi:10.1007/s10546-004-6003-2.
[30]
Wyser, K.; Jones, C.G.; Du, P.; Girard, E.; Willén, U.; Cassano, J.; Christensen, J.H.; Curry, J.A.; Dethloff, K.; Haugen, J.E.; et al. An evaluation of Arctic cloud and radiation processes during the SHEBA year: Simulation results from eight Arctic regional climate models. Clim. Dyn. 2008, 30, doi:10.1007/s00382-007-0286-1.
[31]
Luo, Y.; Xu, K.M.; Morrison, H.; McFarquhar, G. Arctic mixed-phase clouds simulated by a cloud-resolving model: Comparison with ARM observations and sensitivity to microphysics parameterizations. J. Atmos. Sci. 2008, 65, doi:10.1175/2007JAS2467.1.
[32]
Klein, S.A.; McCoy, R.B.; Morrison, H.; Ackerman, A.S.; Avramov, A.; de Boer, G.; Chen, M.; Cole, J.N.S.; Del Genio, A.D.; Falk, M.; et al. Intercomparison of model simulations of mixed-phase clouds observed during the ARM mixed-phase Arctic cloud experiment. I: Single-layer cloud. Q. J. R. Meteorol. Soc. 2009, 135, doi:10.1002/qj.416.
[33]
Lubin, D.; Vogelmann, A.M. A climatologically significant aerosol longwave indirect effect in the Arctic. Nature 2006, 439, 453–456.
[34]
Garrett, T.J.; Zhao, C. Increased Arctic cloud longwave emmisivity associated with pollution from mid-latitudes. Nature 2006, 440, 787–789, doi:10.1038/nature04636.
[35]
Morrison, H.; Pinto, J.O.; Curry, J.A.; McFarquhar, G.M. Sensitivity of modeled Arctic mixed-phase stratocumulus to cloud condensation and ice nuclei over regionally varying surface conditions. J. Geophys. Res. 2008, 113, doi:10.1029/2007JD008729.
[36]
Morrison, H.; McCoy, R.B.; Klein, S.A.; Xie, S.; Luo, Y.; Avramov, A.; Chen, M.; Cole, J.N.S.; Falk, M.; Foster, M.J.; et al. Intercomparison of model simulations of mixed-phase clouds observed during the ARM mixed-phase Arctic cloud experiment. II: Multilayer cloud. Q. J. R. Meteorol. Soc. 2009, 135, doi:10.1002/qj.415.
[37]
Hannay, C.; Bhatt, U.S.; Harrington, J.Y. Single-Column Model Simulations of Arctic Cloudiness and Surface Radiative Fluxes during the Surface Heat Budget of the Arctic (SHEBA) Experiment. In Proceedings of the 6th Conference on Polar Meteorology and Oceanography; American Meteorological Society (AMS), San Diego, CA, USA,, 14–18 May 2001.
[38]
Kay, J.E.; Raeder, K.; Gettelman, A.; Anderson, J. The boundary layer response to recent Arctic sea ice loss and implications for high-latitude climate feedbacks. J. Clim. 2011, 24, doi:10.1175/2010JCLI3651.1.
[39]
Pinto, J.O.; Curry, J.A. Atmospheric convective plumes emanating from leads 2. Microphysical and radiative processes. J. Geophys. Res. 1995, 100, 4633–4642.
Rozwadowska, A.; Cahalan, R.F. Plane-parallel biases computed from inhomogeneous Arctic clouds and sea ice. J. Geophys. Res. 2002, 107, doi:10.1029/2002JD002092.
[42]
Sato, K.; Inoue, J.; Kodama, Y.M.; Overland, J.E. Impact of Arctic sea-ice retreat on the recent change in cloud-base height during autumn. Geophys. Res. Lett. 2012, 39, doi:10.1029/2012GL051850.
[43]
Lohmann, U.; Roeckner, E. Design and performance of a new cloud microphysics parametrization developed for the ECHAM general circulation model. Clim. Dyn. 1996, 12, 557–572, doi:10.1007/BF00207939.
[44]
Salzmann, M.; Ming, Y.; Golaz, J.C.; Ginoux, P.A.; Morrison, H.; Gettelman, A.; Kr?mer, M.; Donner, L.J. Two-moment bulk stratiform cloud microphysics in the GFDL AM3 GCM: Description, evaluation, and sensitivity tests. Atmos. Chem. Phys. 2010, 10, doi:10.5194/acp-10-8037-2010.
[45]
Tompkins, A.M. A prognostic parameterization for the subgrid-scale variability of water vapor and clouds in large-scale models and its use to diagnose cloud cover. J. Atmos. Sci. 2002, 59, 1917–1942, doi:10.1175/1520-0469(2002)059<1917:APPFTS>2.0.CO;2.
[46]
Zhu, P.; Zuidema, P. On the use of PDF schemes to parameterize sub-grid clouds. Geophys. Res. Lett. 2009, 36, doi:10.1029/2008GL036817.
[47]
Pinto, J.O.; Curry, J.A.; Lynch, A.H.; Persson, P.O.G. Modeling clouds and radiation for the November 1997 period of SHEBA using a column climate model. J. Geophys. Res. 1999, 104, doi:10.1029/98JD02517.
[48]
Dethloff, K.; Abegg, C.; Rinke, A.; Hebestadt, I.; Romanov, V.F. Sensitivity of Arctic climate simulations to different boundary layer parameterizations in a regional climate model. Tellus A 2001, 53, 1–26.
[49]
Zhang, J.; Lohmann, U. Sensitivity of single column model simulations of Arctic springtime clouds to different cloud cover and mixed phase cloud parameterizations. J. Geophys. Res. 2003, 108, doi:10.1029/2002JD003136.
[50]
Morrison, H.; Curry, J.A.; Shupe, M.D.; Zuidema, P. A new double-moment microphysics parameterization for application in cloud and climate models. part II: Single-column modeling of Arctic clouds. J. Atmos. Sci. 2005, 62, doi:10.1175/JAS3447.1.
[51]
The HIRHAM Regional Climate Model Version 5(β); Technical Report 06-17; Danish Meteorological Institute (DMI): Copenhagen, Denmark, 2007.
[52]
Sundquist, H.; Berge, E.; Kristjánsson, J.E. Condensation and cloud parameterization studies with a mesoscale numerical weather prediction model. Mon. Weather Rev. 1989, 117, 1641–1657, doi:10.1175/1520-0493(1989)117<1641:CACPSW>2.0.CO;2.
[53]
Undén, P.; Rontu, L.; J?rvinen, H.; Lynch, P.; Calvo, J.; Cats, G.; Cuxart, J.; Eerola, K.; Fortelius, C.; Garcia-Moya, J.A.; et al. HIRLAM-5 Scientific Documentation. In HIRLAM-5 Project; Swedish Meteorological and Hydrological Institute (SMHI): Norrk?ping, Sweden, 2002.
[54]
The Atmospheric General Circulation Model ECHAM5–Part I: Model Description; Technical Report 349; Max Planck Institute (MPI) for Meteorology: Hamburg, Germany, 2003.
[55]
The ERA–Interim Archive; ERA report series; European Center for Medium-Range Weather Forecasts (ECMWF): Reading, UK, 2009.
[56]
Bergman, J.W.; Sardeshmukh, P.D. Dynamic stabilization of atmospheric single column models. J. Clim. 2004, 17, 1004–1021, doi:10.1175/1520-0442(2004)017<1004:DSOASC>2.0.CO;2.
[57]
Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597, doi:10.1002/qj.828.
[58]
Randall, D.A.; Cripe, D.G. Alternative methods for specification of observed forcing in single-column models and cloud system models. J. Geophys. Res. 1999, 104, doi:10.1029/1999JD900765.
[59]
Lohmann, U.; McFarlane, N.; Levkov, L.; Abdella, K.; Albers, F. Comparing different cloud schemes of a single column model by using mesoscale forcing and nudging technique. J. Clim. 1999, 12, 438–461, doi:10.1175/1520-0442(1999)012<0438:CDCSOA>2.0.CO;2.
[60]
Atmospheric Investigations on the Russian North Pole Drifting Ice Station NP-35. Available online: http://www.awi.de/en/research/research_divisions/climate_science/atmospheric_circulations/expeditions_campaigns/np_35/ (accessed on 9 August 2012).
[61]
The Atmospheric General Circulation Model ECHAM4: Model Description and Simulation of Present-Day Climate; Technical Report 218; Max Planck Institute (MPI) for Meteorology: Hamburg, Germany, 1996.
[62]
Wild, M.; Roeckner, E. Radiative fluxes in the ECHAM5 general circulation model. J. Clim. 2006, 19, doi:10.1175/JCLI3823.1.
[63]
Tiedtke, M. A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Weather Rev. 1989, 117, 1179–1800.
[64]
Nordeng, T.E. Extended Versions of the Convective Parametrization Scheme at ECMWF and Their Impact on the Mean and Transient Activity of the Model in the Tropics. In Technical Memorandum; European Center for Medium-Range Weather Forecasts (ECMWF): Reading, UK, 1994.
[65]
Wang, S.; Wang, Q.; Jordan, R.E.; Persson, P.O.G. Interactions among longwave radiation of clouds, turbulence, and snow surface temperature in the Arctic: A model sensitivity study. J. Geophys. Res. 2001, 106, doi:10.1029/2000JD900358.
[66]
Lohmann, U.; Stier, P.; Hoose, C.; Ferrachat, S.; Kloster, S.; Roeckner, E.; Zhang, J. Cloud microphysics and aerosol indirect effects in the global climate model ECHAM5-HAM. Atmos. Chem. Phys. 2007, 7, 3425–3446, doi:10.5194/acp-7-3425-2007.
[67]
Rossow, W.B.; Schiffer, R.A. Advances in understanding clouds from ISCCP. Bull. Am. Meteorol. Soc. 1999, 80, 2261–2287, doi:10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2.
[68]
International Satellite Cloud Climatology Project (ISCCP) by NASA Goddard Institute for Space Studies (GISS). Available online: ftp://isccp.giss.nasa.gov/pub/data/D2Tars/ (accessed on 25 August 2011).
[69]
MODIS Atmosphere L3 Gridded Product Algorithm Theoretical Basis Document. Available online: http://modis-atmos.gsfc.nasa.gov/_docs/MOD08MYD08%20ATBD%20C005.pdf (accessed on 9 August 2012).
[70]
Moderate Resolution Imaging Spectroradiometer (MODIS) by National Aeronautics and Space Administration (NASA). Available online: ftp://ladsweb.nascom.nasa.gov/allData/5/MOD08_M3/ (accessed on 14 October 2011).
[71]
Schweiger, A.J.; Lindsay, R.W.; Key, J.R.; Francis, J.A. Arctic clouds in multilayer satellite data sets. Geophys. Res. Lett. 1999, 26, 1845–1848, doi:10.1029/1999GL900479.
[72]
Hahn, C.J.; Warren, S.G.; London, J. The effect of moonlight on observations of cloud cover at night, and application to cloud climatology. J. Clim. 1995, 8, 1429–1466, doi:10.1175/1520-0442(1995)008<1429:TEOMOO>2.0.CO;2.
[73]
Wielicki, B.A.; Parker, L. On the determination of cloud cover from satellite sensors: The effect of sensor spatial resolution. J. Geophys. Res. 1992, 97, doi:10.1029/92JD01061.
[74]
Zhao, M.; Wang, Z. Comparison of Arctic clouds between European Center for Medium-Range Weather Forecasts simulations and Atmospheric Radiation Measurement Climate Research Facility long-term observations at the North Slope of Alaska Barrow Site. J. Geophys. Res. 2010, 115, doi:10.1029/2010JD014285.
[75]
Axelsson, P.; Tjernstr?m, M.; S?derberg, S.; Svensson, G. An ensemble of Arctic simulations of the AOE-2001 field experiment. Atmosphere 2011, 2, doi:10.3390/atmos2020146.
[76]
Weber, T.; Quaas, J.; R?is?nen, P. Evaluation of the statistical cloud scheme in the ECHAM5 model using satellite data. Q. J. R. Meteorol. Soc. 2011, 137, doi:10.1002/qj.887.
[77]
Liu, Y.; Ackerman, S.A.; Maddux, B.C.; Key, J.R.; Frey, R.A. Errors in cloud detection over the Arctic using a satellite imager and implications for observing feedback mechanisms. J. Clim. 2010, 23, doi:10.1175/2009JCLI3386.1.