The Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) being developed for airborne measurements will offer retrievals of aerosol microphysical and optical properties from multi-angular and multi-spectral measurements of sky radiance and direct-beam sun transmittance. In this study, we assess the expected accuracy of the 4STAR-based aerosol retrieval and its sensitivity to major sources of anticipated perturbations in the 4STAR measurements. The major anticipated perturbations are (1) an apparent enhancement of sky radiance at small scattering angles associated with the necessarily compact design of the 4STAR and (2) an offset ( i.e., uncertainty) of sky radiance calibration independent of scattering angle. The assessment is performed through application of the operational AERONET aerosol retrieval and constructed synthetic 4STAR-like data. Particular attention is given to the impact of these perturbations on the broadband fluxes and the direct aerosol radiative forcing. The results from this study suggest that limitations in the accuracy of 4STAR-retrieved particle size distributions and scattering phase functions have diminished impact on the accuracy of retrieved bulk microphysical parameters, permitting quite accurate retrievals of properties including the effective radius (up to 10%, or 0.03), and the radiatively important optical properties, such as the asymmetry factor (up to 4%, or ±0.02) and single-scattering albedo (up to 6%, or ±0.04). Also, the obtained results indicate that the uncertainties in the retrieved aerosol optical properties are quite small in the context of the calculated fluxes and direct aerosol radiative forcing (up to 15%, or 3 W?m ?2).
References
[1]
Intergovernmental Panel on Climate Change (IPCC). The Physical Science Basis, Fourth Assessment Report Summary; Cambridge Univ. Press: Cambridge, UK, 2007.
[2]
Ramaswamy, V.; Boucher, O.; Haigh, J.; Hauglustaine, D.; Haywood, J.M.; Myhre, G.; Nakajima, T.; Shi, G.Y.; Solomon, S. Radiative Forcing of Climate Change. In Climate Change 2001: The Scientific Basis—Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA, 2001.
[3]
CCSP. Atmospheric Aerosol Properties and Climate Impacts; National Aeronautics and Space Administration: Washington, DC, USA, 2009.
[4]
Kinne, S.; Schulz, M.; Textor, C.; Guibert, S.; Balkanski, Y.; Bauer, S.E.; Berntsen, T.; Berglen, T.F.; Boucher, O.; Chin, M.; et al. An aerocom initial assessment—Optical properties in aerosol component modules of global models. Atmos. Chem. Phys. 2006, 6, 1815–1834, doi:10.5194/acp-6-1815-2006.
[5]
Loeb, N.G.; Su, W. Direct aerosol radiative forcing uncertainty based on a radiative perturbation analysis. J. Climate 2010, 23, 5288–5293, doi:10.1175/2010JCLI3543.1.
[6]
Yu, H.; Kaufman, Y.J.; Chin, M.; Feingold, G.; Remer, L.A.; Anderson, T.L.; Balkanski, Y.; Bellouin, N.; Boucher, O.; Christopher, S.; et al. A review of measurement-based assessments of aerosol direct radiative effect and forcing. Atmos. Chem. Phys. 2006, 6, 613–666, doi:10.5194/acp-6-613-2006.
[7]
Smirnov, A.; Holben, B.N.; Giles, D.M.; Slutsker, I.; O’Neill, N.T.; Eck, T.F.; Macke, A.; Croot, P.; Courcoux, Y.; Sakerin, S.M.; et al. Maritime aerosol network as a component of AERONET—First results and comparison with global aerosol models and satellite retrievals. Atmos. Meas. Tech. 2011, 4, 583–597, doi:10.5194/amt-4-583-2011.
[8]
Bellouin, N.; Boucher, O.; Haywood, J.; Reddy, M.S. Global estimate of aerosol direct radiative forcing from satellite measurements. Nature 2005, 438, 1138–1141.
[9]
Kim, D.; Ramanathan, V. Solar radiation budget and radiative forcing due to aerosols and clouds. J. Geophys. Res. 2008, doi:10.1029/2007JD008434.
[10]
McComiskey, A.; Schwartz, S.E.; Schmid, B.; Guan, H.; Lewis, E.R.; Ricchiazzi, P.; Ogren, J.A. Direct aerosol forcing: Calculation from observables and sensitivities to inputs. J. Geophys. Res. 2008, doi:10.1029/2007JD009170.
[11]
Derimian, Y.; Dubovik, O.; Tanre, D.; Goloub, P.; Lapyonok, T.; Mortier, A. Optical properties and radiative forcing of the Eyjafjallaj?kull volcanic ash layer observed over Lille, France, in 2010. J. Geophys. Res. 2012, doi:10.1029/2011JD016815.
Dubovik, O.; King, M.D. A flexible inversion algorithm for retrieval of aerosol optical properties from sun and sky radiance measurements. J. Geophys. Res. 2000, 105, 20673–20696, doi:10.1029/2000JD900282.
[15]
Dubovik, O.; Holben, B.; Eck, T.; Smirnov, A.; Kaufman, Y.J.; King, M.D.; Tanré, D.; Slutsker, I. Variability of absorption and optical properties of key aerosol types observed in worldwide locations. J. Atmos. Sci. 2002, 59, 590–608, doi:10.1175/1520-0469(2002)059<0590:VOAAOP>2.0.CO;2.
[16]
Garcia, O.E.; Diaz, A.M.; Exposito, F.J.; Diaz, J.P.; Dubovik, O.; Dubuisson, P.; Roger, J.-C.; Eck, T.F.; Sinyuk, A.; Derimian, Y.; Dutton, E.G.; Schafer, J.S.; Holben, B.N.; Garcia, C.A. Validation of AERONET estimates of atmospheric solar fluxes and aerosol radiative forcing by ground-based broadband measurements. J. Geophys. Res. 2008, doi:10.1029/2008JD010211.
Baumgardner, D.; Brenguier, J.; Bucholtz, A.; Coe, H.; DeMott, P.; Garrett, T.J.; Ayet, J.F.; Hermann, M.; Heymsfield, A.; Korolev, A.; Kr?mer, M.; Petzold, A.; Strapp, W.; Pilewskie, P.; Taylor, J.; Twohy, C.; Wendisch, M.; Bachalo, W.; Chuang, P. Airborne instruments to measure atmospheric aerosol particles, clouds and radiation: A cook’s tour of mature and emerging technology. Atmos. Res. 2011, 102, 10–29, doi:10.1016/j.atmosres.2011.06.021.
[19]
Schmid, B.; Redemann, J.; Russell, P.B.; Hobbs, P.V.; Hlavka, D.L.; McGill, M.J.; Holben, B.N.; Welton, E.J.; Campbell, J.R.; Torres, O.; et al. Coordinated airborne, spaceborne, and groundbased measurements of massive, thick aerosol layers during the dry season in southern Africa. J. Geophys. Res. 2003, doi:10.1029/ 2002JD002297.
[20]
Redemann, J.; Schmid, B.; Eilers, J.A.; Kahn, R.; Levy, R.C.; Russell, P.B.; Livingston, J.M.; Hobbs, P.V.; Smith, W.L., Jr.; Holben, B.N. Suborbital measurements of spectral aerosol optical depth and its variability at subsatellite grid scales in support of CLAMS 2001. J. Atmos. Sci. 2005, 62, 993–1007, doi:10.1175/JAS3387.1.
[21]
Russell, P.B.; Livingston, J.M.; Hignett, P.; Kinne, S.; Wong, J.; Chien, A.; Bergstroam, R.; Durkee, P.; Hobbs, P.V. Aerosol-induced radiative flux changes off the United States mid-Atlantic coast: Comparison of values calculated from sun photometer and in situ data with those measured by airborne pyranometer. J. Geophys. Res. 1999, 104, 2289–2307.
[22]
Russell, P.B.; Redemann, J.; Schmid, B.; Bergstrom, W. Comparison of aerosol single scattering albedos derived by diverse techniques in two North Atlantic experiments. J. Atmos. Sci. 2002, 59, 609–619, doi:10.1175/1520-0469(2002)059<0609:COASSA>2.0.CO;2.
[23]
Magi, B.I.; Fu, Q.; Redemann, J.; Schmid, B. Using aircraft measurements to estimate the magnitude and uncertainty of the shortwave direct radiative forcing of southern African biomass burning aerosol. J. Geophys. Res. 2008, doi:10.1029/2007JD009258.
[24]
Redemann, J.; Pilewskie, P.; Russell, P.B.; Livingston, J.M.; Howard, S.; Schmid, B.; Pommier, J.; Gore, W.; Eilers, J.; Wendisch, M. Airborne measurements of spectral direct aerosol radiative forcing in the intercontinental chemical transport experiment/intercontinental transport and chemical transformation of anthropogenic pollution 2004. J. Geophys. Res. 2006, doi:10.1029/2005JD006812.
[25]
Schmidt, K.S.; Pilewskie, P.; Bergstrom, R.; Coddington, O.; Redemann, J.; Livingston, J.; Russell, P.; Bierwirth, E.; Wendisch, M.; Gore, W.; Dubey, M.K.; Mazzoleni, C. A new method for deriving aerosol solar radiative forcing and its first application within MILAGRO/INTEX-B. Atmos. Chem. Phys. 2010, 10, 7829–7843.
[26]
Dunagan, S.; Johnson, R.; Zavaleta, J.; Walker, R.; Chang, C.; Russell, P.; Schmid, B.; Flynn, C.; Redemann, J. 4STAR Spectrometer for Sky-Scanning Sun-Tracking Atmospheric Research: Instrument Technology Development. In Proceeding of 34th International Symposium on Remote Sensing of Environment, Sydney, Australia, 10–15 April 2011.
[27]
Schmid, B.; Flynn, C.; Dunagan, S.; Johnson, R.; Russell, P.B.; Redemann, J.; Kluzek, C.; Kassianov, E.; Sinyuk, A.; Livingston, J.M.; et al. 4STAR Spectrometer for Sky-Scanning Sun-Tracking Atmospheric Research: Results from Test-Flight Series, Paper A14E-05. In Proceeding of American Geophysical Union Fall Meeting, San Francisco, CA, USA, 5–9 December 2011.
[28]
Dubovik, O.; Smirnov, A; Holben, B.N.; King, M.D.; Kaufman, Y.J.; Eck, T.F.; Slutsker, I. Accuracy assessment of aerosol optical properties retrieval from AERONET sun and sky radiance measurements. J. Geophys. Res. 2000, 105, 9791–9806.
[29]
Magi, B.I.; Fu, Q.; Redemann, J. A methodology to retrieve self-consistent aerosol optical properties using common aircraft measurements. J. Geophys. Res. 2007, doi:10.1029/2006JD008312.
[30]
Myhre, G. Consistency between satellite-derived and modeled estimates of the direct aerosol effect. Science 2005, 325, 187–190, doi:10.1126/science.1174461.
[31]
Salinas, V.S.; Chew, B.N.; Liew, S.C. Retrievals of aerosol optical depth and Angstrom exponent from ground-based Sun-photometer data of Singapore. Appl. Opt. 2009, 48, 1473–1484, doi:10.1364/AO.48.001473.
[32]
Dubovik, O.; Herman, M.; Holdak, A.; Lapyonok, T.; Tanre, D.; Deuze, J.L.; Ducos, F.; Sinyuk, A.; Lopatin, A. Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations. Atmos. Meas. Tech. 2011, 4, 975–1018, doi:10.5194/amt-4-975-2011.
[33]
Dubovik, O.; Sinyuk, A.; Lapyonok, T.; Holben, B.N.; Mishchenko, M.; Yang, P.; Eck, T.F.; Volten, H.; Munoz, O.; Veihelmann, B.; et al. Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust. J. Geophys. Res. 2006, doi:10.1029/2005JD006619.
[34]
Lacis, A.A.; Oinas, V. A description of the correlated k-distribution method for modeling nongray gaseous absorption, thermal emission, and multiple-scattering in vertically inhomogeneous atmospheres. J. Geophys. Res. 1991, 96, 9027–9063, doi:10.1029/90JD01945.
[35]
Stamnes, K.; Tsay, S.C.; Wiscombe, W.; Jayaweera, K. Numerically stable algorithm for discrete-ordinate-method radiative-transfer in multiple-scattering and emitting layered media. Appl. Opt. 1998, 27, 2502–2509.
[36]
Nakajima, T.; Tanaka, M. Algorithms for radiative intensity calculations in moderately thick atmospheres using a truncation approximation. J. Quant. Spectrosc. Radiat. Transfer. 1988, 40, 51–69, doi:10.1016/0022-4073(88)90031-3.
[37]
Smirnov, A.; Holben, B.N.; Eck, T.F.; Dubovik, O.; Slutsker, I. Cloud-screening and quality control algorithms for the AERONET database. Remote Sens. Environ. 2000, 73, 337–349, doi:10.1016/S0034-4257(00)00109-7.
[38]
Moody, G.E.; King, M.D.; Platnick, S.; Schaaf, C.B.; Gao, F. Spatially complete global spectral surface albedos: Value-added datasets derived from Terra MODIS land products. IEEE Trans. Geosci. Remote Sens. 2005, 43, 144–158, doi:10.1109/TGRS.2004.838359.
[39]
Hansen, J.; Sato, M.; Ruedy, R. Radiative forcing and climate response. J. Geophys. Res. 1997, 102, 6831–6864.
[40]
Boucher, O.; Schwartz, S.E.; Ackerman, T.P.; Anderson, T.L.; Bergstrom, B.; Bonne, B.; Chylek, P.; Dahlback, A.; Fouquart, Y.; Fu, Q.; et al. Intercomparison of models representing shortwave radiative forcing by sulfate aerosols. J. Geophys. Res. 1998, 103, 16979–16998.
[41]
Russell, B.P.; Kinne, S.; Bergstrom, R. Aerosol climate effects: Local radiative forcing and column closure experiments. J. Geophys. Res. 1997, 102, 9397–9407, doi:10.1029/97JD00112.
[42]
Remer, A.L.; Kaufman, Y.J. Aerosol direct radiative effect at the top of the atmosphere over cloud free ocean derived from four years of MODIS data. Atmos. Chem. Phys. 2006, 6, 237–253, doi:10.5194/acp-6-237-2006.
[43]
Liou, K.N. Reference. In An Introduction to Atmospheric Radiation; Elsevier: New York, NY, USA, 2002.
[44]
Nakajima, T.; Glauco, T.; Rao, R.; Boi, P.; Kaufman, Y.; Holben, B. Use of sky brightness measurements from ground for remote sensing of particulate polydispersions. Appl. Opt. 1996, 35, 2672–2686, doi:10.1364/AO.35.002672.
[45]
Hansen, J.; Travis, L.D. Light scattering in planetary atmospheres. Space Sci. Rev. 1974, 16, 527–610, doi:10.1007/BF00168069.
[46]
Kokhanovsky, A.A. Aerosol Optics: Light Absorption And Scattering by Particles in the Atmosphere; Springer: Berlin, Germany, 2008.
[47]
Kleidman, G.R.; O’Neill, N.T.; Remer, L.A.; Kaufman, Y.J.; Eck, T.F.; Tanre, D.; Dubovik, O.; Holben, B.N. Comparison of moderate resolution imaging spectroradiometer (MODIS) and aerosol robotic network (AERONET) remote-sensing retrievals of aerosol fine mode fraction over ocean. J. Geophys. Res. 2005, doi:10.1029/2005JD005760.
[48]
Anderson, L.T.; Wu, Y.; Chu, D.A.; Schmid, B.; Redemann, J.; Dubovik, O. Testing the MODIS satellite retrieval of aerosol fine-mode fraction. J. Geophys. Res. 2005, 110, doi:10.1029/2005JD005978.
[49]
Kaufman, J.Y.; Boucher, O.; Tanre, D.; Chin, M.; Remer, L.A.; Takemura, T. Aerosol anthropogenic component estimated from satellite data. Geophys. Res. Lett. 2005, 32, doi:10.1029/2005GL023125.
[50]
Yu, H.; Chin, M.; Remer, A.L.; Kleidman, R.; Bellouin, N; Blan, H; Diehl, T. Variability of marine aerosol fine mode fraction estimates of anthropogenic aerosol component over cloud-free oceans from the moderate resolution imaging spectroradiometer (MODIS). J. Geopys. Res. 2009, doi:10.1029/2008JD010648.
[51]
Andrews, E.; Sheridan, P.; Fiebig, M.; McComiskey, A.; Ogren, J.A.; Arnott, P.; Covert, D.; Elleman, R.; Gasparini, R.; Collins, D.; et al. Comparison of methods for deriving aerosol asymmetry parameter. J. Geophys. Res. 2006, doi:10.1029/2004JD005734.
[52]
Michalsky, J.; Anderson, G.; Barnard, J.; Delamere, J.; Gueymard, C.; Kato, S.; Kiedron, P.; McComiskey, A.; Ricchiazzi, P. Shortwave radiative closure studies for clear skies during the Atmospheric Radiation Measurement 2003 Aerosol Intensive Observational Period. J. Geophys. Res. 2006, doi:10.1029/2005JD006341.