全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Biosensors  2012 

Synthesis of a Functionalized Polypyrrole Coated Electrotextile for Use in Biosensors

DOI: 10.3390/bios2040465

Keywords: electrotextile, biosensor, polypyrrole, immobilization

Full-Text   Cite this paper   Add to My Lib

Abstract:

An electrotextile with a biosensing focus composed of conductive polymer coated microfibers that contain functional attachment sites for biorecognition elements was developed. Experiments were conducted to select a compound with a pendant functional group for inclusion in the polymer, a fiber platform, and polymerization solvent. The effects of dopant inclusion and post-polymerization wash steps were also analyzed. Finally, the successful attachment of avidin, which was then used to capture biotin, to the electrotextile was achieved. The initial results show a nonwoven fiber matrix can be successfully coated in a conductive, functionalized polymer while still maintaining surface area and fiber durability. A polypropylene fiber platform with a conductive polypyrrole coating using iron (III) chloride as an oxidant, water as a solvent, and 5-sulfosalicylic acid as a dopant exhibited the best coating consistency, material durability, and lowest resistance. Biological attachment of avidin was achieved on the fibers through the inclusion of a carboxyl functional group via 3-thiopheneacetic acid in the monomer. The immobilized avidin was then successfully used to capture biotin. This was confirmed through the use of fluorescent quantum dots and confocal microscopy. A preliminary electrochemical experiment using avidin for biotin detection was conducted. This technology will be extremely useful in the formation of electrotextiles for use in biosensor systems.

References

[1]  Chambers, J.P.; Arulanandam, B.P.; Matta, L.L.; Weis, A.; Valdes, J.J. Biosensor recognition elements. Curr. Issues Mol. Biol.?2008, 10, 1–12. 18525101
[2]  Setterington, E.B.; Cloutier, B.C.; Ochoa, J.M.; Cloutier, A.K.; Patel, P.J.; Alocilja, E.C. Rapid, sensitive, and specific immunomagnetic separation of foodborne pathogens. Int. J. Food Saf. Nutr. Publ. Health?2011, 4, 83–100, doi:10.1504/IJFSNPH.2011.042576.
[3]  Torres-Chavolla, E.; Alocilja, E.C. Aptasensors for detection of microbial and viral pathogens. Biosens. Bioelectron.?2009, 24, 3175–3182, doi:10.1016/j.bios.2008.11.010. 19117748
[4]  Zhang, D.; Huarng, M.C.; Alocilja, E.C. A multiplex nanoparticle-based bio-barcoded DNA sensor for the simultaneous detection of multiple pathogens. Biosens. Bioelectron.?2010, 26, 1736–1742, doi:10.1016/j.bios.2010.08.012.
[5]  Cahn, T.M. Biosensors. In Sensor Physics and Technology Series; Grattan, K.T.V., Augousti, A., Eds.; Chapman and Hall: London, UK, 1993.
[6]  Ivnitski, D.; Abdel-Hamid, I.; Atanasov, P.; Wilkins, E. Biosensors for detection of pathogenic bacteria. Biosens. Bioelectron.?1999, 14, 599–624, doi:10.1016/S0956-5663(99)00039-1.
[7]  Scott, A.O. Biosensors for Food Analysis; Woodhead Publishing: Cambridge, UK, 1998; pp. 13–27.
[8]  Wang, J. Analytical Electrochemistry, 2nd ed. ed.; John Wiley & Sons: New York, NY, USA, 2000; Volume XVI.
[9]  Principles of Bacterial Detection: Biosensors, Recognition Receptors and Microsystems; Zourob, M., Elwary, S., Turner, A., Eds.; Springer Science+Business Media LLC: New York, NY, USA, 2008; pp. 341–370.
[10]  Bhattacharyya, D.; Senecal, K.; Marek, P.; Senecal, A.; Gleason, K.K. High surface area flexible chemiresistive biosensor by oxidative chemical vapor deposition. Adv. Funct. Mater.?2011, 21, 4328–4337, doi:10.1002/adfm.201101071.
[11]  Gregory, V.R.; Kimbrell, W.C.; Kuhn, H.H. Electrically conductive non-metallic textile coatings. J. Coated Fabr.?1991, 20, 167–175.
[12]  Heisey, C.L.; Wightman, J.P.; Pittman, E.H.; Kuhn, H.H. Surface and adhesion properties of polypyrrole-coated textiles. Text. Res. J.?1993, 63, 247–256, doi:10.1177/004051759306300501.
[13]  Kuhn, H.H.; Kimbrell, W.C. Method for Making Electrically Conductive Textile Materials; Milliken Research Corporation: Spartanburg, SC, USA, 1989.
[14]  Kuhn, H.H.; Kimbrell, W.C.; Fowler, J.E.; Barry, C.N. Properties and applications of conductive textiles. Synthetic Met.?1993, 57, 3707–3712, doi:10.1016/0379-6779(93)90501-M.
[15]  McGraw, S.K.; Anderson, M.J.; Alocilja, E.C.; Marek, P.J.; Senecal, K.J.; Senecal, A.G. Antibody immobilization on conductive polymer coated nonwoven fibers for biosensors. Sensor Transducer J.?2011, 13, 142–149.
[16]  Granato, F.; Scampicchio, M.; Bianco, A.; Mannino, S.; Bertarelli, C.; Zerbi, G. Disposable electrospun electrodes based on conducting nanofibers. Electroanalysis?2008, 20, 1374–1377, doi:10.1002/elan.200804185.
[17]  Marks, R.S.; Novoa, A.; Thomassey, D.; Cosnier, S. An innovative strategy for immobilization of receptor proteins on to an optical fiber by use of poly(pyrrole-biotin). Anal. Bioanal. Chem.?2002, 374, 1056–1063, doi:10.1007/s00216-002-1576-4. 12458419
[18]  Konry, T.; Novoa, A.; Shemer-Avni, Y.; Hanuka, N.; Cosnier, S.; Lepellec, A.; Marks, R.S. Optical fiber immunosensor based on a poly(pyrrole-benzophenone) film for the detection of antibodies to viral antigen. Anal. Chem.?2005, 77, 1771–1779, doi:10.1021/ac048569w.
[19]  Kwon, O.S.; Park, S.J.; Jang, J. A high-performance VEGF aptamer functionalized polypyrrole nanotube biosensor. Biomaterials?2010, 31, 4740–4747, doi:10.1016/j.biomaterials.2010.02.040. 20227108
[20]  Vaddiraju, S.; Senecal, K.; Gleason, K.K. Novel strategies for the deposition of -COOH functionalized conducting copolymer films and the assembly of inorganic nanoparticles on conducting polymer platforms. Adv. Funct. Mater.?2008, 18, 1929–1938, doi:10.1002/adfm.200800196.
[21]  Alocilja, E.C.; Radke, S.M. Market analysis of biosensors for food safety. Biosens. Bioelectron.?2003, 18, 841–846, doi:10.1016/S0956-5663(03)00009-5. 12706600
[22]  Frontiers in Biosensorics II: Practical Applications, 1st ed.; Scheller, F.W., Schubert, F., Fedrowitz, J., Eds.; Birkh?user Basel: Basel, Switzerland, 2000; Volume 2, pp. 121–140.
[23]  Swain, A. Biosensors: A new realism. Ann. Biol. Clin. Paris?1992, 50, 175–179. 1456497
[24]  Myers, R.E. Chemical oxidative polymerization as a synthetic route to electrically conducting polypyrroles. J. Electron. Mater.?1986, 15, 61–69, doi:10.1007/BF02649904.
[25]  Armes, S.P. Optimum reaction conditions for the polymerization of pyrrole by iron(III) chloride in aqueous solution. Synthetic Met.?1987, 20, 365–371, doi:10.1016/0379-6779(87)90833-2.
[26]  Novak, P. Limitations of polypyrrole synthesis in water and their causes. Electrochim. Acta?1992, 37, 1227–1230, doi:10.1016/0013-4686(92)85060-X.
[27]  Stanke, D.; Hallensleben, M.L.; Toppare, L. Oxidative polymerization of some N-alkylpyrroles with ferric chloride. Synthetic Met.?1995, 73, 267–272, doi:10.1016/0379-6779(95)80025-5.
[28]  Hermanson, G.T. Bioconjugate Techniques, 2nd ed. ed.; Elsevier Science: London, UK, 2008.
[29]  Avlyanov, J.K.; Kuhn, H.H.; Josefowicz, J.Y.; MacDiarmid, A.G. In situ deposited thin films of polypyrrole: Conformational changes induced by variation of dopant and substrate surface. Synthetic Met.?1997, 84, 153–154, doi:10.1016/S0379-6779(97)80689-3.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133