The availability of nutrients and the quantity and quality of food at the base of food webs have largely been ignored in discussions of the Phanerozoic record of biodiversity. We examine the role of nutrient availability and phytoplankton stoichiometry (the relative proportions of inorganic nutrients to carbon) in the diversification of the marine biosphere. Nutrient availability and phytoplankton stoichiometry played a critical role in the initial diversification of the marine biosphere during the Neoproterozoic. Initial biosphere expansion during this time resulted in the massive sequestration of nutrients into biomass which, along with the geologically slow input of nutrients from land, set the stage for severe nutrient limitation and relatively constant marine biodiversity during the rest of the Paleozoic. Given the slow nutrient inputs from land and low recycling rates, the growth of early-to-middle Paleozoic metazoans remained limited by their having to expend energy to first “burn off” (respire) excess carbon in food before the associated nutrients could be utilized for growth and reproduction; the relative equilibrium in marine biodiversity during the Paleozoic therefore appears to be real. Limited nutrient availability and the consequent nutrient imbalance may have delayed the appearance of more advanced carnivores until the Permo-Carboniferous, when widespread orogeny, falling sea level, the spread of forests, greater weathering rates, enhanced ocean circulation, oxygenation, and upwelling all combined to increase nutrient availability. During the Meso-Cenozoic, rising oxygen levels, the continued nutrient input from land, and, especially, increasing rates of bioturbation, enhanced nutrient availability, increasing the nutrient content of phytoplankton that fueled the diversification of the Modern Fauna.
References
[1]
Sepkoski, J.J. A factor analytic description of the Phanerozoic marine fossil record. Paleobiology 1981, 7, 36–53.
[2]
Alroy, J. The shifting balance of diversity among major marine animal groups. Science 2010, 329, 1191–1194, doi:10.1126/science.1189910.
[3]
Hannisdal, B.; Peters, S.E. Phanerozoic earth system evolution and marine biodiversity. Science 2011, 334, 1121–1124, doi:10.1126/science.1210695.
[4]
Benton, M.J. The Red Queen and the court jester: Species diversity and the role of biotic and abiotic factors through time. Science 2009, 323, 728–732, doi:10.1126/science.1157719.
[5]
Marshall, C.R. Marine biodiversity dynamics over deep time. Science 2010, 329, 1156–1157, doi:10.1126/science.1194924.
[6]
Tappan, H. Primary production, isotopes, extinctions and the atmosphere. Palaeogeog. Palaeoclimatol. Palaeoecol. 1968, 4, 187–210, doi:10.1016/0031-0182(68)90047-3.
[7]
Tappan, H. Microplankton, Ecological Succession and Evolution; North American Paleontological Convention: Chicago, IL, USA, 1971; pp. 1058–1103. part H.
[8]
Tappan, H. Phytoplankton: Below thesalt at theglobal table. J. Paleontol. 1986, 60, 545–554.
[9]
Bambach, R.K. Energetics in the global marine fauna: A connection between terrestrial diversification and change in the marine biosphere. GeoBios 1999, 32, 131–144, doi:10.1016/S0016-6995(99)80025-4.
[10]
Bambach, R.K. Seafood through time: Changes in biomass, energetics, and productivity in the marine ecosystem. Paleobiology 1993, 19, 372–397.
[11]
Martin, R.E. Secular increase in nutrient levels through the Phanerozoic: Implications for productivity, biomass, and diversity of the marine biosphere. Palaios 1996, 11, 209–219, doi:10.2307/3515230.
[12]
Kilham, P.; Kilham, S.S. The evolutionary ecology of phytoplankton. In The Physiological Ecology of Phytoplankton; Morris, I., Ed.; University of California Press: Berkeley, CA, USA, 1980; pp. 571–597.
[13]
Bush, A.M.; Bambach, R.K. Paleoecologic megatrends in marine metazoa. Ann. Rev. Earth Planet. Sci. 2011, 39, 241–269, doi:10.1146/annurev-earth-040809-152556.
[14]
Thayer, C.W. Sediment-mediated biological disturbance and the evolution of marine benthos. In Biotic Interactions in Recent and Fossil Benthic Communities; Tevesz, M.J.S., McCall, P.L., Eds.; Plenum Press: New York, NY, USA, 1983; pp. 479–625.
[15]
Fox, R. Energy and the Evolution of Life; W.H. Freeman: New York, NY, USA, 2008; p. 182.
Quigg, A.; Irwin, A.J.; Finkel, Z.V. Evolutionary imprint of endosymbiosis of elemental stoichiometry: Testing inheritance hypotheses. Proc. R. Soc. London Ser. B 2011, 278, 526–534, doi:10.1098/rspb.2010.1356.
[18]
Sterner, R.W.; Elser, J.J. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere; Princeton University Press: Princeton, NJ, USA, 2002; p. 439.
[19]
Martin, R.E.; Quigg, A.; Podkovyrov, V. Marine biodiversification in response to evolving phytoplankton stoichiometry. Palaeogeog. Palaeoclimatol. Palaeoecol. 2008, 258, 277–291, doi:10.1016/j.palaeo.2007.11.003.
[20]
Veizer, J.; Ala, D.; Azmy, K.; Bruckschen, P.; Buhl, D.; Bruhn, F.; Carden, G.A.F.; Diener, A.; Ebneth, S.; Godderis, Y.; et al. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chem. Geol. 1999, 161, 59–88, doi:10.1016/S0009-2541(99)00081-9.
[21]
Monta?ez, I.P.; Osleger, D.A.; Banner, J.L.; Mack, L.E. Evolution of the Sr and C isotope composition of Cambrian oceans. GSA Today 2000, 10, 1–7.
[22]
Tardy, Y.; N’Kounkou, R.; Probst, J.-L. The global water cycle and continental erosion during Phanerozoic time (570 my). Am. J. Sci. 1989, 289, 455–483, doi:10.2475/ajs.289.4.455.
[23]
Misra, S.; Froelich, P.N. Lithium isotope history of Cenozoic seawater: Changes in silicate weathering and reverse weathering. Science 2012, 335, 818–823.
[24]
Egge, J.K.; Aksnes, D.L. Silica as regulating nutrient in phytoplankton competition. Mar. Ecol. Progr. Ser. 1992, 83, 281–289, doi:10.3354/meps083281.
[25]
Aubry, M.-P. Early paleogene calcareous nannoplankton evolution: A tale of climatic amelioration. In Late Paleocene-Early Eocene Climatic and Biotic Events in the Marine and Terrestrial Records; Aubry, M.-P., Lucas, S., Berggren, W.A., Eds.; Columbia University Press: New York, NY, USA, 1998; pp. 158–203.
[26]
Riegman, R.; Stolte, W.; Noordeloos, A.A.M.; Slezak, D. Nutrient uptake and alkaline phosphatase (ec 3:1:3:1) activity of Emiliania huxleyi (Prymnesiophyceae) during growth under N and P limitation in continuous cultures. J. Phycol. 2000, 36, 87–96, doi:10.1046/j.1529-8817.2000.99023.x.
[27]
Rabosky, D.L.; Sorhannus, U. Diversitydy namics of marine planktonic diatoms across the Cenozoic. Nature 2009, 557, 183–186.
[28]
Pirini-Radrazzani, C. Coccoliths from Permian deposits of Eastern Turkey. In Proceedings of the II Planktonic Conference, Rome, Italy, 1971; Farinacci, A., Ed.; Edizioni Tecnoscienza: Rome, Italy; 2, pp. 993–1001.
[29]
Gartner, S.; Gentile, R. Problematic Pennsylvanian coccoliths from Missouri. Micropaleontology 1972, 18, 401–404, doi:10.2307/1485047.
[30]
Minoura, N.; Chitoku, T. Calcareous nannofossil and problematic microorganisms found in the late Paleozoic limestones. J. Fac. Sci. Hokkaido Univ. Series IV Geol. Miner. 1972, 19, 199–212.
[31]
Munnecke, A.; Samtleben, C.; Servais, T.; Vachard, D. SEM-observation of calcareous micro- and nannofossils incertae sedis from the Silurian of Gotland, Sweden: Preliminary results. Geobios 1998, 32, 307–314.
[32]
Munnecke, A.; Servais, T.; Vachard, D. A new familyof calcareous microfossils from theSilurian ofGotland, Sweden. Palaeontology 2000, 43, 1153–1172.
[33]
Flügel, E.H. Microfacies of Carbonate Rocks: Analysis, Interpretation and Application; Springer Verlag: Berlin, Germany, 2010; p. 984.
[34]
Bown, P.R.; Lees, J.A.; Young, J.R. Calcareous nannoplankton evolution and diversity through time. In Coccolithophores: From Molecular Processes to Global Impact; Thierstein, H., Young, J.R., Eds.; Springer-Verlag: Berlin, Germany, 2004; pp. 481–508.
[35]
De Vargas, C.; Aubry, M.-P.; Probert, I.; Young, J. Origin and evolution of coccolithophores: From coastal hunters to oceanic farmers. In Evolution of Primary Producers in the Sea; Falkowski, P., Knoll, A.H., Eds.; Academic Press: New York, NY, USA, 2007; pp. 251–285.
Grantham, P.J.; Wakefield, L.L. Variations in the sterane carbon number distributions of marine source rock derived crude oils through geological time. Org. Geochem. 1988, 12, 61–73, doi:10.1016/0146-6380(88)90115-5.
[38]
Schwark, L.; Empt, P. Sterane biomarkers as indicators of Palaeozoic algal evolution and extinction events. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2006, 240, 225–236, doi:10.1016/j.palaeo.2006.03.050.
[39]
Perch-Nielsen, K. Mesozoic calcareous nannofossils. In Plankton Stratigraphy; Bolli, H.M., Saunders, J.B., Perch-Nielsen, K., Eds.; Cambridge University Press: Cambridge, UK, 1985; pp. 329–426.
[40]
Boss, S.K.; Wilkinson, B.H. Planktogenic/eustatic control on cratonic oceanic carbonate accumulation. J. Geol. 1991, 99, 497–513.
[41]
Van Andel, T.H. Mesozoic/Cenozoic calcite compensation depth and the global distribution of calcareous sediments. Earth Planet Sci. Lett. 1975, 26, 187–195, doi:10.1016/0012-821X(75)90086-2.
[42]
Hüneke, H.; Henrich, R. Pelagic sedimentation in modern and ancient oceans. In Deep-Sea Sediments; Hüneke, H., Mulder, T., Eds.; Elsevier: Amsterdam, The Netherlands, 2011; pp. 215–351.
[43]
Bown, P.R.; Dunkley Jones, T.; Lees, J.A.; Randell, R.D.; Mizzi, J.A.; Pearson, P.N.; Coxall, H.K.; Young, J.R.; Nicholas, C.J.; Karega, A.; et al. A Paleogene calcareous microfossil Konservat-Lagerst?tte from the Kilwa Group of coastal Tanzania. Geol. Soc. Am. Bull. 2008, 120, 3–12, doi:10.1130/B26261.1.
[44]
Stanley, S.M.; Hardie, L.A. Hypercalcification: Paleontology links plate tectonics and geochemistry to sedimentology. GSA Today 1999, 9, 2–7.
[45]
Stanley, S.M.; Ries, J.B.; Hardie, L.A. Seawater chemistry, coccolithophore population growth, and the origin of Cretaceous chalk. Geology 2005, 33, 593–596, doi:10.1130/G21405.1.
[46]
Paasche, E. Roles of nitrogen and phosphorus in coccolith formation in Emiliania huxleyi (Prymnesiophyceae). Eur. J. Phycol. 1998, 33, 33–42.
[47]
Riebesell, U. Effects of CO2 enrichment on marine phytoplankton. J. Oceanogr. 2004, 60, 719–729, doi:10.1007/s10872-004-5764-z.
[48]
Walker, K.R.; Diehl, W.W. The role of marine cementation in the preservation of Lower Paleozoic assemblages. In Extraordinary Fossil Biotas: Their Ecological and Evolutionary Significance; Whittington, H.B., Conway Morris, S., Eds.; Scholium International, Inc.: Washington, NY, USA, 1985; Volume B311, pp. 143–153.
[49]
Young, J.R.; Geisen, M.; Probert, I. Review of selected aspects of coccolithophore biology with implications for paleobiodiversity estimation. Micropaleontology 2005, 51, 267–288, doi:10.2113/gsmicropal.51.4.267.
[50]
Falkowski, P.G.; Katz, M.E.; Knoll, A.H.; Quigg, A.; Raven, J.A.; Schofield, O.; Taylor, F.J.R. The evolution of modern eukaryotic phytoplankton. Science 2004, 305, 354–360.
[51]
Hackett, J.D.; Yoon, H.S.; Butterfield, N.J.; Sanderson, M.J.; Bhattacharya, D. Plastid endosvmbiosis: Sources and timing of the major events. In Evolution of Primary Producers in the Sea; Falkowski, P., Knoll, A.H., Eds.; Academic Press: New York, NY, USA, 2007; pp. 109–132.
[52]
Wilde, P.; Lyons, T.W.; Quinby-Hunt, M.S. Organic proxies in black shales: Molybdenum. Chem. Geol. 2004, 206, 167–176, doi:10.1016/j.chemgeo.2003.12.005.
[53]
Yoon, H.S.; Hackett, J.D.; Bhattacharya, D. A single origin of the peridinin- and fucoxanthin- containing plastids in dinoflagellates through tertiary endosymbiosis. Proc. Natl. Acad. Sci. USA 2002, 99, 11724–11729.
[54]
Yoon, H.S.; Hackett, J.D.; Pinto, G.; Bhattacharya, D. Thesingle, ancient origin of chromist plastids. Proc. Natl. Acad. Sci. USA 2002, 99, 15507–15512.
[55]
Butterfield, N.J. A vaucheriacean alga from the middle Neoproterozoic of Spitsbergen: Implications for the evolution of Proterozoic eukaryotes and the Cambrian explosion. Paleobiology 2004, 30, 231–252, doi:10.1666/0094-8373(2004)030<0231:AVAFTM>2.0.CO;2.
[56]
Cohen, P.A.; Knoll, A.H.; Kodner, R.B. Large spinose microfossils in Ediacaran rocks as resting stages of early animals. Proc. Natl. Acad. Sci. USA 2009, 106, 6519–6524.
[57]
Van de Schootbrugge, B.; Bailey, T.; Rosenthal, Y.; Katz, M.E.; Wright, J.D.; Feist-Burkhardt, S.; Miller, K.G.; Falkowski, P.G. Early Jurassic climate change and the radiation of organic-walled phytoplankton in the Tethys Ocean. Paleobiology 2005, 31, 73–97, doi:10.1666/0094-8373(2005)031<0073:EJCCAT>2.0.CO;2.
[58]
Tyrrell, T. The relative influences of nitrogen and phosphorus on oceanic primary production. Nature 1999, 400, 525–531, doi:10.1038/22941.
[59]
Howarth, R.; Marino, R. Nitrogen as the limiting nutrient for eutrophication in coastal marine environments: Evolving views over three decades. Limnol. Oceanogr. 2006, 51, 364–376.
[60]
Elser, J.J.; Dobberfuhl, D.R.; MacKay, N.A.; Schampel, J.H. Organism size, life history, and N:P stoichiometry. BioScience 1996, 46, 674–684, doi:10.2307/1312897.
[61]
Main, T.M.; Dobberfuhl, D.R.; Elser, J.J. N:P stoichiometry and ontogeny of crustacean zooplankton: A test of the growth rate hypothesis. Limnol. Oceanogr. 1997, 42, 1474–1478, doi:10.4319/lo.1997.42.6.1474.
[62]
Gillooly, J.F.; Charnov, E.L.; West, G.B.; Savage, V.M.; Brown, J.H. Effects of size and temperature on developmental time. Nature 2002, 417, 70–73.
Allmon, W.D.; Ross, R.M. Nutrients and evolution in the marine realm. In Evolutionary Paleoecology: The Ecological Context of Evolutionary Change; Allmon, W.D., Bottjer, D.J., Eds.; Columbia University Press: New York, NY, 2001; pp. 105–148.
[65]
Falkowski, P.G.; Rosenthal, Y. Biological diversity and resource plunder in the geological record: Casual correlations or causal relationships? Proc. Natl. Acad. Sci. USA 2001, 98, 4290–4292, doi:10.1073/pnas.091096798.
[66]
Ingall, E.; Jahnke, R. Influence of water-column anoxia on the elemental fractionation of carbon and phosphorus during sediment diagenesis. Mar. Geol. 1997, 139, 219–229, doi:10.1016/S0025-3227(96)00112-0.
[67]
Goldhammer, T.; Brüchert, V.; Ferdelman, T.G.; Zabel, M. Microbial sequestration of phosphorus in anoxic upwelling sediments. Nat. Geosci. 2010, 3, 557–561, doi:10.1038/ngeo913.
[68]
Williams, R.J.P.; Frausto Da Silva, J.J.R. The Natural Selection of the Chemical Elements; Bath Press Ltd.: Bath, UK, 1996; p. 646.
[69]
Riegel, W. The Late Palaeozoic phytoplankton blackout—Artefact or evidence of global change? Rev. Palaeobot. Palynol. 2008, 148, 73–90, doi:10.1016/j.revpalbo.2006.12.006.
[70]
Pitrat, C.W. Phytoplankton and the late Paleozoic wave of extinction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1970, 8, 49–55, doi:10.1016/0031-0182(70)90079-9.
[71]
Falkowski, P.G.; Schofield, O.; Katz, M.E.; van de Schootbrugge, B.; Knoll, A. Why is the land green and the ocean red? In Coccolithophores: From Molecular Processes to Global Impact; Thierstein, H., Young, J.R., Eds.; Springer-Verlag: Berlin, Germany, 2004; pp. 429–453.
[72]
Tyrrell, T.; Taylor, A.H. A modelling study of Emiliania huxleyi in the NE Atlantic. J. Mar. Syst. 1996, 9, 83–112, doi:10.1016/0924-7963(96)00019-X.
Cárdenas, A.; Harries, P.J. Effect of nutrient availability on marine origination rates throughout the Phanerozoic eon. Nat. Geosci. 2010, 3, 430–434.
[75]
Martin, R.E. Cyclic and secular variation in microfossil biomineralization: Clues to the biogeochemical evolution of Phanerozoic oceans. Glob. Planet. Chang. 1995, 11, 1–23, doi:10.1016/0921-8181(94)00011-2.
[76]
Martin, R.E. Cyclic and secular trends in preservation through geologic time: Implications for the evolution of biogeochemical cycles. In Proceedings of International Conference Taphos 2002, Third Meeting on Taphonomy and Fossilization, Valencia, Spain, 14–16 February 2002; De Renzi, M., Alonso, M.V.P., Belinchón, M., Pe?alver, E., Montoya, P., Márquez-Aliaga, A., Eds.; Gráficas Ronda, S.L.: Valencia, Spain, 2002; pp. 67–76.
[77]
Martin, R.E. The fossil record of biodiversity: Nutrients, productivity, habitat area and differential preservation. Lethaia 2003, 36, 179–193, doi:10.1080/00241160310005340.
[78]
Jones, N. Cambrian’s fiercest hunter defanged. Nature 2009.
[79]
Signor, P.; Brett, C.B. The mid-Paleozoic precursor to the Mesozoic marine revolution. Paleobiology 1984, 10, 229–245.
[80]
Ausich, W.I.; Bottjer, D.J. History of tiering among suspension feeders in the benthic marineecosystem. J. Geol. Educ. 1991, 39, 313–318.
[81]
Solan, M.; Batty, P.; Bulling, M.T.; Godbold, J.A. How biodiversity affects ecosystem processes: Implications for ecological revolutions and benthic ecosystem function. Aquat. Biol. 2008, 2, 289–301.
[82]
Teal, L.R.; Parker, E.R.; Solan, M. Sediment mixed layer as a proxy for benthic ecosystem process and function. Mar. Ecol. Progr. Ser. 2010, 414, 27–40, doi:10.3354/meps08736.
[83]
Lehnert, O.; Vecoli, M.; Servasis, T.; Nützel, A. Did plankton evolution trigger the Ordovician diversifications? Acta Palaeontol. Sinica 2007, 46, 262–268.
[84]
Erwin, D.H.; Laflamme, M.; Tweedt, S.M.; Sperling, E.A.; Pisani, D.; Peterson, K.J. The Cambrian conundrum: Early divergence and later ecological success in the early history of animals. Science 2011, 334, 1091–1097.
[85]
Sepkoski, J.J.; Miller, A.I. Evolutionary faunas and the distribution of Paleozoic marine communities in space and time. In Phanerozoic Diversity Patterns: Profiles in Macroevolution; Valentine, J.W., Ed.; Princeton University Press: Princeton, NJ, USA, 1985; pp. 153–190.
[86]
Butterfield, N.J.; Knoll, A.H.; Swett, K. A bangiophyte red alga from the Proterozoic rocks of Arctic Canada. Science 1990, 250, 104–107.
[87]
Filippelli, G.M. Phosphorus and thegust of fresh air. Nature 2010, 467, 1052–1053, doi:10.1038/4671052a.
[88]
Planavsky, N.J.; Rouxel, O.J.; Bekker, A.; Lalonde, S.V.; Konhauser, K.O.; Reinhard, C.T.; Lyons, T.W. The evolution of the marine phosphate reservoir. Nature 2010, 467, 1088–1090.
[89]
Finkel, Z.V.; Beardall, J.; Flynn, K.J.; Quigg, A.; Rees, T.A.V.; Raven, J.A. Phytoplankton in a changing world: Cell size and elemental stoichiometry. J. Plankton Res. 2010, 32, 119–137, doi:10.1093/plankt/fbp098.
[90]
Thingstad, T.F.; Krom, M.D.; Mantoura, R.F.C.; Flaten, G.A.F.; Groom, S. Nature of phosphorus limitation in the ultraoligotrophic eastern Mediterranean. Science 2005, 309, 1068–1071.
[91]
Elser, J.J.; Watts, J.; Schampel, J.H.; Farmer, J. Early food-webs on a trophic knife-edge? Experimental data from a modern microbialite-based ecosystem. Ecol. Lett. 2006, 9, 295–303, doi:10.1111/j.1461-0248.2005.00873.x.
[92]
Zhuravlev, A.Y. Biotic diversity and structure during the Neoproterozoic-Ordovician transition. In The Ecology of the Cambrian Radiation; Zhuravlev, A.Y., Riding, R., Eds.; Columbia University Press: New York, NY, USA, 2001; pp. 173–199.
[93]
Cook, P.J.; McElhinny, M.W. A reevaluation of the spatial and temporal distribution of sedimentary phosphate deposits in the light of plate tectonics. Econ. Geol. 1979, 74, 315–330.
[94]
Huntley, J.W.; Xiao, S.; Kowalewski, M. 1.3 Billion years of acritarch history: An empirical morphospace approach. Precambrian Res. 2006, 144, 52–68, doi:10.1016/j.precamres.2005.11.003.
[95]
Hayes, J.M.; Strauss, H.; Kaufman, A.J. The abundance of 13C in marine organic matter and isotopic fractionation in the global biogeochemical cycle of carbon during the past 800 Ma. Chem. Geol. 1999, 161, 103–125, doi:10.1016/S0009-2541(99)00083-2.
[96]
Finkel, Z.V.; Katz, M.; Wright, J.; Schofield, O.; Falkowski, P.G. Climatically driven macroevolutionary patterns in the size of marine diatoms over the Cenozoic. Proc. Natl. Acad. Sci. USA 2005, 102, 8927–8932.
[97]
Finkel, Z.V.; Sebbo, J.; Feist-Burkhardt, S.; Irwin, A.J.; Katz, M.E.; Schofield, O.; Young, J.R.; Falkowski, P.G. A universal driver of macroevolutionary change in the size of marine phytoplankton over the Cenozoic. Proc. Natl. Acad. Sci. USA 2007, 104, 20416–20420.