|
电子与信息学报 2012
Voice Activity Detection in Complex Environment Based on Hilbert-Huang Transform and Order Statistics Filter
|
Abstract:
希尔伯特-黄变换是一种全数据驱动的自适应非平稳信号时频分析方法,但是在强噪声环境下语音信号的希尔伯特能量谱曲线波动较大,对语音端点检测造成很大的影响,该文提出了一种基于希尔伯特-黄变换和顺序统计滤波的检测方法。该方法将含噪语音信号进行经验模态分解,通过对固有模态函数进行自适应权重选取获得信号的希尔伯特能量谱,利用顺序统计滤波器对每帧的能量谱进行平滑处理作为语音/非语音的鉴别特征。实验结果表明,该方法适用于复杂噪声环境的端点检测,在低信噪比情况下仍然能够有效地检测出语音信号,降低信号误检率。