全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Metals  2012 

Investigation on the Mechanical Properties of Mg-Al Alloys (AZ41 and AZ51) and Its Composites

DOI: 10.3390/met2030313

Keywords: AZ31 magnesium alloy, yttria, microstructure, tensile, compression

Full-Text   Cite this paper   Add to My Lib

Abstract:

In the present study, AZ41 and AZ51 alloys were fabricated using disintegrated melt deposition technique followed by hot extrusion. AZ41/Yttria and AZ51/Yttria composites were prepared using 0.6 wt% yttria nano particles in the alloys using the same fabrication technique. From the tensile test results, both strengths (yield and tensile) and ductility were improved in AZ51 when compared to AZ41. In comparison with its alloy counterparts, the yield and tensile strengths were enhanced while maintaining the same ductility in AZ41/Yttria composite, but comparable strengths with decreased ductility were observed in AZ51/Yttria composite. Under compressive loading, an improvement in strengths with similar ductility was observed in AZ51 when compared to AZ41. The best combination of strengths and ductility was observed in AZ51/Yttria composites from compression test results. The obtained mechanical properties are correlated with the microstructure observations.

References

[1]  Mordike, B.L.; Kainer, K.U. Magnesium Alloys and Their Applications; Werkstoff-Insformations gesellschaft: Frankfu, Germany, 1998.
[2]  Kainer, K.U. Magnesium Alloys and Technology; WILEY-VCH: Weinheim, Germany, 2003.
[3]  Polmear, I.J. Magnesium alloys and applications. Mater. Sci. Technol. 1994, 10, 1–16, doi:10.1179/026708394790163401.
[4]  Friendich, H.; Schumanm, S. Research for a new age of magnesium in the automotive industry. J. Mater. Process. Technol. 2001, 117, 276–281, doi:10.1016/S0924-0136(01)00780-4.
[5]  Mordike, B.L.; Ebert, T. Magnesum: Properties, applications, potential. Mater. Sci. Eng. A 2001, 302, 37–45, doi:10.1016/S0921-5093(00)01351-4.
[6]  Yang, Z.; Li, J.P.; Zhang, J.X.; Lorimer, G.W.; Robson, J. Review on research and development of magnesium alloys. Acta Metall. Sin. 2008, 21, 313–328.
[7]  Agnew, S.R.; Tome, C.N.; Brown, D.W.; Holden, T.M.; Vogel, S.C. Study of slip mechanisms in a magnesium alloy by neutron diffraction and modelling. Scripta Mater. 2003, 48, 1003–1008, doi:10.1016/S1359-6462(02)00591-2.
[8]  Barnett, M.R.; Keshavarz, Z.; Beer, A.G.; Atwell, D. Influence of grain size on the compressive deformation of wrought Mg-3Al-1Zn. Acta Mater. 2004, 52, 5093–5103, doi:10.1016/j.actamat.2004.07.015.
[9]  Mukai, T.; Yamanoi, M.; Watanabe, H.; Higashi, K. Ductility enhancement in AZ31 magnesium alloy by controlling its grain structure. Scripta Mater. 2001, 45, 89–94.
[10]  Chino, Y.; Kimura, K.; Hakamada, M.; Mabuchi, M. Mechanical anisotropy due to twinning in an extruded AZ31 Mg alloy. Mater. Sci. Eng. A 2008, 485, 311–317, doi:10.1016/j.msea.2007.07.076.
[11]  Yin, S.M.; Wang, C.H.; Diao, Y.D.; Wu, S.D.; Li, S.X. Influence of grain size and texture on the yield asymmetry of Mg-3Al-1Zn alloy. J. Mater. Sci. Technol. 2011, 27, 29–34.
[12]  Laser, T.; Hartig, C.; Nurnberg, M.R.; Letzig, D.; Bormann, R. The influence of calcium and cerium mischmetal on the microstructural evolution of Mg-3Al-1Zn during extrusion and resulting mechanical properties. Acta Mater. 2008, 56, 2791–2798, doi:10.1016/j.actamat.2008.02.010.
[13]  Morisada, Y.; Fujii, H.; Nagaoka, T.; Fukusumi, M. MWCNTs/AZ31 surface composites fabricated by friction stir processing. Mater. Sci. Eng. A 2006, 419, 344–348, doi:10.1016/j.msea.2006.01.016.
[14]  Nguyen, Q.B.; Gupta, M. Increasing significantly the failure strain and work of fracture of solidification processed AZ31B using nano-Al2O3 particulates. J. Alloy. Compd. 2008, 459, 244–250, doi:10.1016/j.jallcom.2007.05.038.
[15]  Nguyen, Q.B.; Gupta, M. Enhancing compressive response of AZ31B magnesium alloy using alumina nanoparticulates. Comp. Sci. Technol. 2008, 68, 2185–2192, doi:10.1016/j.compscitech.2008.04.020.
[16]  Nguyen, Q.B.; Tun, K.S.; Chan, J.; Kwok, R.; Kumar, J.V.M.; Phung, H.T.; Gupta, M. Simultaneous effect of nano-Al2O3 and micrometre Cu particulates on microstructure and mechanical properties of magnesium alloy AZ31. Mater. Sci. Technol. 2012, 28, 227–233.
[17]  Hassan, S.F.; Gupta, M. Development and characterization of ductile Mg/Y2O3 nanocomposites. J. Eng. Mat. Technol. 2007, 129, 462–467, doi:10.1115/1.2744418.
[18]  Goh, C.S.; Wei, J.; Lee, L.C.; Gupta, M. Properties and deformation behaviour of Mg-Y2O3 nanocomposites. Acta Mater. 2007, 55, 5115–5121, doi:10.1016/j.actamat.2007.05.032.
[19]  Tun, K.S.; Gupta, M. Improving mechanical properties of magnesium using nano-Yttria reinforcement and microwave assisted powder metallurgy method. Comp. Sci. Technol. 2007, 67, 2657–2664, doi:10.1016/j.compscitech.2007.03.006.
[20]  Avedesian, M.M.; Baker, H. ASM Specialty Handbook: Magnesium and Magnesium Alloys; ASM International: Materials Park, OH, USA, 1999.
[21]  StJohn, D.H.; Qian, M.; Easton, M.A.; Cao, P.; Hildebrand, Z. Grain refinement in Mg alloys. Metall. Mater. Trans. A 2005, 36, 1669–1679, doi:10.1007/s11661-005-0030-6.
[22]  Lee, Y.C.; Dahle, A.K.; StJohn, D.H. The role of solute in grain refinement of magnesium. Metall. Mater. Trans. A 2000, 31, 2895–2906, doi:10.1007/BF02830349.
[23]  Song, C.J.; Han, Q.Y.; Zhai, Q.J. Review of grain refinement methods for as-cast microstructure of magnesium alloy. China Foundary 2009, 6, 93–103.
[24]  Kang, Y.C.; Chan, S.L. Tensile properties of nanometric Al2O3 particulate-reinforced aluminum matrix composites. Mater. Chem. Phys. 2004, 85, 438–443, doi:10.1016/j.matchemphys.2004.02.002.
[25]  Choi, H.; Sun, Y.; Slater, B.P.; Konishi, H.; Li, H. AZ91D/TiB2 nanocomposites fabricated by solidification nanoprocessing. Adv. Eng. Mater. 2012, 14, 291–295, doi:10.1002/adem.201100313.
[26]  Shanthi, M.; Tun, K.S.; Pandey, R.S.; Gupta, M. Enhancing overall tensile behavior or ductility of AZ91D using nano-Al2O3 and heat treatment. Met. Mater. 2011, 49, 197–205.
[27]  Asla, K.M.; Tari, A.; Khomamizadeh, F. The effect of different content of Al, RE and Si element on the microstructure, mechanical and creep properties of Mg-Al alloys. Mater. Sci. Eng. A 2009, 523, 1–6, doi:10.1016/j.msea.2009.06.048.
[28]  Suryanarayana, C. Mechanical alloying and milling. Prog. Mater. Sci. 2001, 46, 1–25, doi:10.1016/S0079-6425(99)00010-9.
[29]  Cullity, B.D. Element of X-Ray Diffraction, 2nd ed.; Addison-Wesley: Reading, MA, USA, 1978; p. 414.
[30]  McDanels, D.C. Analysis of stress-strain, fracture and ductility behavior of aluminum matrix composites containing discontinuous silicon carbide reinforcement. Metall. Trans. A 1985, 16, 1105–1115, doi:10.1007/BF02811679.
[31]  Goh, C.S.; Wei, J.; Lee, L.C.; Gupta, M. Ductility improvement and fatigue studies in Mg-CNT nanocomposites. Comp. Sci. Technol. 2008, 68, 1432–1439, doi:10.1016/j.compscitech.2007.10.057.
[32]  Fleck, N.A.; Muller, G.M.; Ashby, M.F.; Hutchinson, J.W. Strain gradient plasticity: Theory and experiment. Acta Metall. Mater. 1994, 42, 475–487, doi:10.1016/0956-7151(94)90502-9.
[33]  Arsenault, R.J.; Shi, N. Dislocation generation due to differences between the coefficients of thermal expansion. Mater. Sci. Eng. 1986, 81, 175–187, doi:10.1016/0025-5416(86)90261-2.
[34]  Somekawa, H.; Mukai, T. Effect of texture on fracture toughness in extruded AZ31 magnesium alloy. Scripta Mater. 2005, 53, 541–545, doi:10.1016/j.scriptamat.2005.04.048.
[35]  Jiang, J.; Godfrey, A.; Liu, W.; Liu, Q. Microtexture evolution via deformation twinning and slip during compression of magnesium alloy AZ31. Mater. Sci. Eng. A 2008, 483–484, 576–579.
[36]  Klimanek, P.; Potzsch, A. Microstructure evolution under compressive plastic deformation of magnesium at different temperatures and strain rates. Mater. Sci. Eng. A 2002, 324, 145–150, doi:10.1016/S0921-5093(01)01297-7.
[37]  Barnett, M.R. Influence of deformation conditions and texture on the high temperature flow stress of magnesium AZ31. J. Light Met. 2001, 1, 167–177, doi:10.1016/S1471-5317(01)00010-4.
[38]  Garces, G.; Rodriguez, M.; Perez, P.; Adeva, P. Effect of volume fraction and particle size on the microstructure and plastic deformation of Mg-Y2O3 composites. Mater. Sci. Eng. A 2006, 419, 357–364, doi:10.1016/j.msea.2006.01.026.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133