This paper presents an integrated digitally controllable microfluidic system for continuous solution supply with a real-time concentration control. This system contains multiple independently operating mixing modules, each integrated with two vortex micropumps, two Tesla valves and a micromixer. The interior surface of the system is made of biocompatible materials using a polymer micro-fabrication process and thus its operation can be applied to chemicals and bio-reagents. In each module, pumping of fluid is achieved by the vortex micropump working with the rotation of a micro-impeller. The downstream fluid mixing is based on mechanical vibrations driven by a lead zirconate titanate ceramic diaphragm actuator located below the mixing chamber. We have conducted experiments to prove that the addition of the micro-pillar structures to the mixing chamber further improves the mixing performance. We also developed a computer-controlled automated driver system to control the real-time fluid mixing and concentration regulation with the mixing module array. This research demonstrates the integration of digitally controllable polymer-based microfluidic modules as a fully functional system, which has great potential in the automation of many bio-fluid handling processes in bio-related applications.
References
[1]
Harrison, D.J.; Fluri, K.; Seiler, K.; Fan, Z.; Effenhauser, C.S.; Manz, A. Micromachining a miniaturized capillary electrophoresis-based chemical analysis system on a chip. Science 1993, 261, 895–897.
Melin, J.; Quake, S.R. Microfluidic large-scale integration: The evolution of design rules for biological automation. Annu. Rev. Biophys. Biomol. Struct. 2007, 36, 213–231, doi:10.1146/annurev.biophys.36.040306.132646.
[4]
Fettinger, J.C.; Manz, A.; Lüdi, H.; Widmer, H.M. Stacked modules for micro flow systems in chemical analysis: Concept and studies using an enlarged model. Sens. Actuat. B: Chem. 1993, 17, 19–25, doi:10.1016/0925-4005(93)85179-E.
Vandelli, N.; Wroblewski, D.; Velonis, M.; Bifano, T. Development of a MEMS microvalve array for fluid flow control. J. Microelectromech. Syst. 1998, 7, 395–403, doi:10.1109/84.735347.
DeMello, A.J. Control and detection of chemical reactions in microfluidic systems. Nature 2006, 442, 394–402, doi:10.1038/nature05062.
[18]
Sia, S.K.; Whitesides, G.M. Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies. Electrophoresis 2003, 24, 3563–3576, doi:10.1002/elps.200305584.
[19]
McClain, M.A.; Culbertson, C.T.; Jacobson, S.C.; Allbritton, N.L.; Sims, C.E.; Ramsey, J.M. Microfluidic devices for the high-throughput chemical analysis of cells. Anal. Chem. 2003, 75, 5646–5655.
[20]
Zare, R.N.; Kim, S. Microfluidic platforms for single-cell analysis. Annu. Rev. Biomed. Eng. 2010, 12, 187–201, doi:10.1146/annurev-bioeng-070909-105238.
[21]
Rohde, C.; Zeng, F.; Gonzalez-Rubio, R.; Angel, M.; Yanik, M. Microfluidic system for on-chip high-throughput whole-animal sorting and screening at subcellular resolution. Proc. Natl. Acad. Sci. USA 2007, 104, 13891–13895.
[22]
Vasdekis, A.E.; Laporte, G.P.J. Enhancing single molecular imaging in optofluidics and microfluidics. Int. J. Mol. Sci. 2011, 12, 5135–5156, doi:10.3390/ijms12085135.
[23]
Warrick, J.; Meyvantsson, I.; Ju, J.; Beebe, D.J. High-throughput microfluidics: improved sample treatment and washing over standard wells. Lab Chip 2007, 7, 316–321, doi:10.1039/b613350a.
Battersby, B.J.; Trau, M. Novel miniaturized systems in high-throughput screening. Trends Biotechnol. 2002, 20, 167–173, doi:10.1016/S0167-7799(01)01898-4.
[26]
Studer, V.; Pepin, A.; Chen, Y.; Ajdari, A. An integrated AC electrokinetic pump in a microfluidic loop for fast and tunable flow control. Analyst 2004, 129, 944–949, doi:10.1039/b408382m.
[27]
Yang, Z.; Matsumoto, S.; Goto, H.; Matsumoto, M.; Maeda, R. Ultrasonic micromixer for microfluidic systems. Sens. Actuat. A: Phys. 2001, 93, 266–272, doi:10.1016/S0924-4247(01)00654-9.
Yang, Z.; Goto, H.; Matsumoto, M.; Maeda, R. Active micromixer for microfluidic systems using lead-zirconate-titanate(PZT)-generated ultrasonic vibration. Electrophoresis 2000, 21, 116–119, doi:10.1002/(SICI)1522-2683(20000101)21:1<116::AID-ELPS116>3.0.CO;2-Y.
[35]
Tesla, N. Valvular Conduit. U.S. Patent 01329559, 21 February 1916.
[36]
Morris, C.J.; Forster, F.K. Low-order modeling of resonance for fixed-valve micropumps based on first principles. J. Microelectromechan. Syst. 2003, 12, 325–334, doi:10.1109/JMEMS.2003.809965.
[37]
Tuzson, J. Centrifugal Pump Design; John Wiley & Sons: New York, NY, USA, 2000; pp. 61–89.
[38]
Turton, R.K. Rotodynamic Pump Design; Cambridge University Press: New York, NY, USA, 1994; pp. 1–10.
[39]
Lin, C.M.; Lai, Y.S.; Liu, H.P.; Chen, C.Y.; Wo, A.M. Trapping of bioparticles via microvortices in a microfluidic device for bioassay applications. Anal. Chem. 2008, 80, 8937–8945.
[40]
Tsai, N.-C.; Sue, C.-Y. Review of MEMS-based drug delivery and dosing systems. Sens. Actuat. A: Phys. 2007, 134, 555–564, doi:10.1016/j.sna.2006.06.014.