Effective flocculation and dewatering of mineral processing streams containing clays are microstructure dependent in clay-water systems. Initial clay flocculation is crucial in the design and for the development of a new methodology of gas exploitation. Microstructural engineering of clay aggregates using covalent cations and Keggin macromolecules have been monitored using the new state of the art Transmission X-ray Microscope (TXM) with 60 nm tomography resolution installed in a Taiwanese synchrotron. The 3-D reconstructions from TXM images show complex aggregation structures in montmorillonite aqueous suspensions after treatment with Na +, Ca 2+ and Al 13 Keggin macromolecules. Na-montmorillonite displays elongated, parallel, well-orientated and closed-void cellular networks, 0.5–3 μm in diameter. After treatment by covalent cations, the coagulated structure displays much smaller, randomly orientated and openly connected cells, 300–600 nm in diameter. The average distances measured between montmorillonite sheets was around 450 nm, which is less than half of the cell dimension measured in Na-montmorillonite. The most dramatic structural changes were observed after treatment by Al 13 Keggin; aggregates then became arranged in compacted domains of a 300 nm average diameter composed of thick face-to-face oriented sheets, which forms porous aggregates with larger intra-aggregate open and connected voids.
References
[1]
Rosenquist, J.T. Physico-chemical properties of soil: Soil–water systems. J. Soil Mech. Found. Divis. ASCE 1959, 85, 31–53.
[2]
Bowles, F.A. Microstructure of sediments: Investigation with ultrathin sections. Science 1968, 159, 1236–12371.
[3]
O’Brien, N.R. Fabric of kaolinite and illite floccules. Clays Clay Miner. 1971, 19, 353–359.
[4]
Grabowska-Olszewska, B.; Osipov, V.; Sokolov, V. Atlas of the Microstructure of Clay Soils; Panstwowe FLE Wydawnictwo Naukowe: Warszawa, Poland, 1984; pp. 49–52.
[5]
Smart, P.; Tovey, N.K. Electron Microscopy of Soils and Sediments: Techniques; Clarendon Press: Oxford, UK, 1982; pp. 84–132.
[6]
Smart, R.St.C.; ?bik, M.; Morris, G.E. STIMAN observation of aggregate structure in clay flocculation. In Proceedings of 43rd Annual Conference of Metallurgists of CIM, Hamilton, Canada, 22–25 August 2004.
[7]
Schneider, G. Cryo x-ray microscopy with high spatial resolution in amplitude and phase contrast. Ultramicroscopy 1998, 75, 85–104, doi:10.1016/S0304-3991(98)00054-0.
[8]
Neuh?usler, U.; Schneider, G.; Ludwig, W.; Meyer, M.A.; Zschech, E.; Hambach, D. X-ray microscopy in Zernike phase contrast mode at 4 keV photon energy with 60 nm resolution. J. Phys. D Appl. Phys. 2003, 36, A79–A82, doi:10.1088/0022-3727/36/10A/316.
Di Fabrizio, E.; Romanato, F.; Gentili, M.; Cabrini, S.; Kaulich, B.; Susini, J.; Barrett, R. High-efficiency multilevel zone plates for keV x-rays. Nature 1999, 401, 895–898, doi:10.1038/44791.
[11]
Lai, B.; Yun, W.B.; Legnini, D.; Xiao, Y.; Chrzas, J.; Vidcaro, P.J. Hard x-ray phase zone plate fabricated by lithographic techniques. Appl. Phys. Lett. 1992, 61, 1877–1879, doi:10.1063/1.108400.
[12]
Yin, G.-C.; Tang, M.-T.; Song, Y.-F.; Chen, F.-R.; Liang, K.S.; Duewer, F.W.; Yun, W; Ko, C.-H.; Shieh, H.-P.D. Energy-tunable transmission x-ray microscope for differential contrast imaging with near 60 nm resolution tomography. Appl. Phys. Lett. 2006, 88, 241115:1–241115:3.
[13]
Attwood, D. Nanotomography comes of age. Nature 2006, 442, 642–643, doi:10.1038/442642b.
[14]
Niemeyer, J.; Thieme, J.; Guttmann, P.; Wilhein, T.; Rudolph, D.; Schmahl, G. Direct imaging of aggregates in aqueous clay-suspensions by x-ray microscopy. Prog.Colloid Polym. Sci. 1994, 95, 139–142, doi:10.1007/BFb0115715.
[15]
Zbik, M.S.; Frost, R.L.; Song, Y.-F. Advantages and limitations of the synchrotron based transmission x-ray microscopy in the study of the clay aggregate structure in aqueous suspensions. J. Colloid Interface Sci. 2008, 319, 169–174, doi:10.1016/j.jcis.2007.10.062.
[16]
Zbik, M.S.; Frost, R.L.; Song, Y.-F.; Chen, Y.-M.; Chen, J.-H. Transmission x-ray microscopy reveals the clay aggregate discrete structure in aqueous environment. J. Colloid Interface Sci. 2008, 319, 457–461, doi:10.1016/j.jcis.2007.12.028.
[17]
Morris, G.E.; ?bik, M.S. Smectite suspension structural behavior. Int. J. Min. Proc. 2009, 93, 20–25, doi:10.1016/j.minpro.2009.05.003.
[18]
Van Olphen, H. An Introduction to Clay Colloid Chemistry; Wiley: New York, NY, USA, 1977; pp. 58–65.
[19]
Lagaly, G.; Ziesmer, S. Colloid chemistry of clay minerals: the coagulation of montmorillonite dispersions. Adv. Colloid Interface Sci. 2003, 100–102, 105–128, doi:10.1016/S0001-8686(02)00064-7.
[20]
M’ewen, M.B.; Pratt, M.I. The Gelation of Montmorillonite. Trans. Faraday Soc. 1957, 53, 535–547, doi:10.1039/tf9575300535.