全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Target Profile Prediction and Practical Evaluation of a Biginelli-Type Dihydropyrimidine Compound Library

DOI: 10.3390/ph4091236

Keywords: combinatorial chemistry, drug design, in silico pharmacology, kinase inhibitor, multi-component reaction, self-organizing map

Full-Text   Cite this paper   Add to My Lib

Abstract:

We present a self-organizing map (SOM) approach to predicting macromolecular targets for combinatorial compound libraries. The aim was to study the usefulness of the SOM in combination with a topological pharmacophore representation (CATS) for selecting biologically active compounds from a virtual combinatorial compound collection, taking the multi-component Biginelli dihydropyrimidine reaction as an example. We synthesized a candidate compound from this library, for which the SOM model suggested inhibitory activity against cyclin-dependent kinase 2 (CDK2) and other kinases. The prediction was confirmed in an in vitro panel assay comprising 48 human kinases. We conclude that the computational technique may be used for ligand-based in silico pharmacology studies, off-target prediction, and drug re-purposing, thereby complementing receptor-based approaches.

References

[1]  Foloppe, N. The benefits of constructing leads from fragment hits. Future Med. Chem.?2011, 3, 1111–1115.
[2]  Hartenfeller, M.; Schneider, G. Enabling future drug discovery by de novo design. Comp. Mol. Sci.?2011, 1, 742–759.
[3]  Rognan, D. Fragment-based approaches and computer-aided drug discovery. Top. Curr. Chem.?2011. in press.
[4]  Vinkers, H.M.; de Jonge, M.R.; Daeyaert, F.F.; Heeres, J.; Koymans, L.M.; van Lenthe, J.H.; Lewi, P.J.; Timmerman, H.; van Aken, K.; Janssen, P.A. Synopsis: Synthesize and optimize system in silico. J. Med. Chem.?2003, 46, 2765–2773.
[5]  Schneider, G.; Geppert, T.; Hartenfeller, M.; Reisen, F.; Klenner, A.; Reutlinger, M.; H?hnke, V.; Hiss, J.A.; Zettl, H.; Keppner, S.; et al. Reaction-driven de novo design, synthesis and testing of potential type II kinase inhibitors. Future Med. Chem.?2011, 3, 415–424.
[6]  Weber, L. The application of multi-component reactions in drug discovery. Curr. Med. Chem.?2002, 9, 2085–2093.
[7]  Dandapani, S.; Marcaurelle, L.A. Current strategies for diversity-oriented synthesis. Curr. Opin. Chem. Biol.?2010, 14, 362–370.
[8]  Schüller, A.; Fechner, U.; Renner, S.; Franke, L.; Weber, L.; Schneider, G. A pseudo-ligand approach to virtual screening. Comb. Chem. High Throughput Screen.?2006, 9, 359–364.
[9]  Weber, L.; Wallbaum, S.; Broger, C.; Gubernator, K. Optimization of the biological activity of combinatorial compound libraries by a genetic algorithm. Angew. Chem. Int. Ed.?1995, 34, 2280–2282.
[10]  Schneider, G.; Fechner, U. Computer-based de novo design of drug-like molecules. Nat. Rev. Drug Discov.?2005, 4, 649–663.
[11]  Zaliani, A.; Boda, K.; Seidel, T.; Herwig, A.; Schwab, C.H.; Gasteiger, J.; Clau?en, H.; Lemmen, C.; Degen, J.; P?rn, J.; et al. Second-generation de novo design: A view from a medicinal chemist perspective. J. Comput. Aided Mol. Des.?2009, 23, 593–602.
[12]  Biginelli, P. Ueber aldehyduramide des acetessig?thers. Ber. Dtsch. Chem. Ges.?1891, 24, 1317–1319.
[13]  Kappe, C.O. The Biginelli reaction. ChemInform?2007, 38, 95–120.
[14]  Kohonen, T. Self-organized formation of topologically correct feature maps. Biol. Cybern.?1982, 43, 59–69.
[15]  Schneider, G. Trends in virtual combinatorial library design. Curr. Med. Chem.?2002, 9, 2095–2101.
[16]  Lee, M.L.; Schneider, G. Scaffold architecture and pharmacophoric properties of natural products and trade drugs: Application in the design of natural product-based combinatorial libraries. J. Comb. Chem.?2001, 3, 284–289.
[17]  Yan, A. Application of self-organizing maps in compounds pattern recognition and combinatorial library design. Comb. Chem. High Throughput Screen.?2006, 9, 473–480.
[18]  Noeske, T.; Sasse, B.C.; Stark, H.; Parsons, C.G.; Weil, T.; Schneider, G. Predicting compound selectivity by self-organizing maps: Cross-activities of metabotropic glutamate receptor antagonists. ChemMedChem?2006, 1, 1066–1068.
[19]  Schneider, G.; Tanrikulu, Y.; Schneider, P. Self-organizing molecular fingerprints: A ligand-based view on drug-like chemical space and off-target prediction. Future Med. Chem.?2009, 1, 213–218.
[20]  Schneider, P.; Tanrikulu, Y.; Schneider, G. Self-organizing maps in drug discovery: Compound library design, scaffold-hopping, repurposing. Curr. Med. Chem.?2009, 16, 258–266.
[21]  Oprea, T.I.; Nielsen, S.K.; Ursu, O.; Yang, J.J.; Taboureau, O.; Mathias, S.L.; Kouskoumvekaki, I.; Sklar, L.A.; Bologa, C.G. Associating drugs, targets and clinical outcomes into an integrated network affords a new platform for computer-aided repurposing. Mol. Inf.?2011, 30, 100–111.
[22]  Garcia-Serna, R.; Mestres, J. Anticipating drug side effects by comparative pharmacology. Expert Opin. Drug Metab. Toxicol.?2010, 6, 1253–1263.
[23]  Vidal, D.; Garcia-Serna, R.; Mestres, J. Ligand-based approaches to in silico pharmacology. Methods Mol. Biol.?2011, 672, 489–502.
[24]  Digles, D.; Ecker, G. Self-organizing maps for in silico screening and data visualization. Mol. Inform.?2011, 30, doi:10.1002/minf.201100082.
[25]  Schneider, G.; Neidhart, W.; Giller, T.; Schmid, G. ‘Scaffold-hopping’ by topological pharmacophore search: A contribution to virtual screening. Angew. Chem. Int. Ed.?1999, 38, 2894–2896.
[26]  Reisen, F.H.; Schneider, G.; Proschak, E. Reaction-MQL: Line notation for functional transformation. J. Chem. Inf. Model.?2009, 49, 6–12.
[27]  Fechner, U.; Franke, L.; Renner, S.; Schneider, P.; Schneider, G. Comparison of correlation vector methods for ligand-based similarity searching. J. Comput. Aided Mol. Des.?2003, 17, 687–698.
[28]  Fechner, U.; Schneider, G. Optimization of a pharmacophore-based correlation vector descriptor for similarity searching. QSAR Comb. Sci.?2004, 23, 19–22.
[29]  Schneider, P.; Schneider, G. Collection of bioactive reference compounds for focused library design. QSAR Comb. Sci.?2003, 22, 713–718.
[30]  Schneider, G.; Schneider, P. Navigation in Chemical Space: Ligand-Based Design of Focused Compound Libraries. In Chemogenomics in Drug Discovery; Kubinyi, H., Müller, G., Eds.; Wiley-VCH: Weinheim, Germany, 2004; pp. 341–376.
[31]  Kappe, C.O.; Dallinger, D. The impact of microwave synthesis on drug discovery. Nat. Rev. Drug Discov.?2006, 5, 51–63.
[32]  Kürti, L.; Czakó, B. Strategic Applications of Named Reactions in Organic Synthesis; Elsevier Academic Press: Amsterdam, The Netherlands, 2005.
[33]  Stadler, A.; Kappe, C.O. Automated library generation using sequential microwave-assisted chemistry. Application toward the Biginelli multicomponent condensation. J. Comb. Chem.?2001, 3, 624–630.
[34]  Schneider, G.; Nettekoven, M. Ligand-based combinatorial design of selective purinergic receptor (A2A) antagonists using self-organizing maps. J. Comb. Chem.?2003, 5, 233–237.
[35]  Schneider, G.; Hartenfeller, M.; Reutlinger, M.; Tanrikulu, Y.; Proschak, E.; Schneider, P. Voyages to the (un)known: Adaptive design of bioactive compounds. Trends Biotechnol.?2009, 27, 18–26.
[36]  Bramson, H.N.; Corona, J.; Davis, S.T.; Dickerson, S.H.; Edelstein, M.; Frye, S.V.; Gampe, R.T., Jr; Harris, P.A.; Hassell, A.; Holmes, W.D.; et al. Oxindole-based inhibitors of cyclin-dependent kinase 2 (CDK2): Design, synthesis, enzymatic activities, and X-ray crystallographic analysis. J. Med. Chem.?2001, 44, 4339–4358.
[37]  Schneider, G.; Clément-Chomienne, O.; Hilfiger, L.; Schneider, P.; Kirsch, S.; B?hm, H.J.; Neidhart, W. Virtual screening for bioactive molecules by evolutionary de novo design. Angew. Chem. Int. Ed.?2000, 39, 4130–4133.
[38]  Langdon, S.R.; Ertl, P.; Brown, N. Bioisosteric replacement and scaffold hopping in lead generation and optimization. Mol. Inform.?2010, 29, 366–385.
[39]  Klenner, A.; Hartenfeller, M.; Schneider, P.; Schneider, G. ‘Fuzziness’ in pharmacophore-based virtual screening and de novo design. Drug Discov. Today Technol.?2010, 7, e237–e244.
[40]  Willett, P. Similarity searching using 2D structural fingerprints. Methods Mol. Biol.?2011, 672, 133–158.
[41]  Hert, J.; Willett, P.; Wilton, D.J.; Acklin, P.; Azzaoui, K.; Jacoby, E.; Schuffenhauer, A. New methods for ligand-based virtual screening: Use of data fusion and machine learning to enhance the effectiveness of similarity searching. J. Chem. Inf. Model.?2006, 46, 462–470.
[42]  Holliday, J.D.; Kanoulas, E.; Malim, N.; Willett, P. Multiple search methods for similarity-based virtual screening: Analysis of search overlap and precision. J. Cheminform.?2011, 3, 29.
[43]  Selzer, P.; Ertl, P. Applications of self-organizing neural networks in virtual screening and diversity selection. J. Chem. Inf. Model.?2006, 46, 2319–2323.
[44]  Wu, Z.; Yen, G.G. A SOM projection technique with the growing structure for visualizing high-dimensional data. Int. J. Neural Syst.?2003, 13, 353–365.
[45]  Furukawa, T. SOM of SOMs. Neural Netw.?2009, 22, 463–478.
[46]  Gupta, S.; Matthew, S.; Abreu, P.M.; Aires-de-Sousa, J. QSAR analysis of phenolic antioxidants using MOLMAP descriptors of local properties. Bioorg. Med. Chem.?2006, 14, 1199–1206.
[47]  Tetko, I.V. Associative neural network. Methods Mol. Biol.?2008, 458, 185–202.
[48]  Maniyar, D.M.; Nabney, I.T.; Williams, B.S.; Sewing, A. Data visualization during the early stages of drug discovery. J. Chem. Inf. Model.?2006, 46, 1806–1818.
[49]  Howe, T.J.; Mahieu, G.; Marichal, P.; Tabruyn, T.; Vugts, P. Data reduction and representation in drug discovery. Drug Discov. Today?2007, 12, 45–53.
[50]  Ivanenkov, Y.A.; Savchuk, N.P.; Ekins, S.; Balakin, K.V. Computational mapping tools for drug discovery. Drug Discov. Today?2009, 14, 767–775.
[51]  Moreau, G.; Broto, P. The autocorrelation of a topological structure: A new molecular descriptor. Nouv. J. Chim.?1980, 4, 359–360.
[52]  Bauknecht, H.; Zell, A.; Bayer, H.; Levi, P.; Wagener, M.; Sadowski, J.; Gasteiger, J. Locating biologically active compounds in medium-sized heterogeneous datasets by topological autocorrelation vectors: Dopamine and benzodiazepine agonists. J. Chem. Inf. Comput. Sci.?1996, 36, 1205–1213.
[53]  Hopkins, A.L.; Groom, C.R.; Alex, A. Ligand efficiency: A useful metric for lead selection. Drug Discov. Today?2004, 9, 430–431.
[54]  Miteva, M.A.; Violas, S.; Montes, M.; Gomez, D.; Tuffery, P.; Villoutreix, B.O. FAF-Drugs: Free ADME/tox filtering of compound collections. Nucleic Acids Res.?2006, 34, W738–W744.
[55]  Whitty, A. Growing PAINS in academic drug discovery. Future Med. Chem.?2011, 3, 797–801.
[56]  Baell, J.B.; Holloway, G.A. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J. Med. Chem.?2010, 53, 2719–2740.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133