|
Trans-generational epigenetic regulation of C. elegans primordial germ cellsAbstract: We show that the histone H3K36 methyltransferase maternal effect sterile (MES)-4 is an epigenetic modifier that prevents aberrant transcription activity in Caenorhabditis elegans primordial germ cells (PGCs). In mes-4 mutant PGCs, RNA Pol II activation is abnormally regulated and the PGCs degenerate. Genetic and genomewide analyses of MES-4-mediated H3K36 methylation suggest that MES-4 activity can operate independently of ongoing transcription, and may be predominantly responsible for maintenance methylation of H3K36 in germline-expressed loci.Our data suggest a model in which MES-4 helps to maintain an 'epigenetic memory' of transcription that occurred in germ cells of previous generations, and that MES-4 and its epigenetic product are essential for normal germ cell development.Chromatin structure is an important determinant of transcriptional activity, and is thought to influence accessibility of the transcriptional machinery to the DNA and/or modulate its productivity, as a component of regulation. The structure of chromatin and its influence on genetic regulation can be heritable, and this heritability forms the basis of epigenetic forms of genome regulation. As the eukaryotic genome is passed between generations, there occurs significant remodeling or re-programming of the gamete epigenomes as they merge in the zygote. An additional round of epigenetic reprogramming also occurs upon establishment of the embryonic germline in many species [1]. The purpose of these events are not clear, but they are thought to be important for resetting an epigenetic 'ground state' that is compatible with developmental pluripotency in the zygote, and with maintaining or establishing totipotency in the germline. Although much of the research focus has been on epigenetic erasure events that occur in the zygote, it is important to note that significant epigenetic information is probably retained and/or re-established in the zygote and primordial germ cells (PGCs). How any epigeneti
|