全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Rapid genome-scale mapping of chromatin accessibility in tissue

DOI: 10.1186/1756-8935-5-10

Keywords: Chromatin accessibility, Tissue, TACh, Benzonase, Cyanase, DNase I

Full-Text   Cite this paper   Add to My Lib

Abstract:

Here we introduce a novel technique that specifically identifies Tissue Accessible Chromatin (TACh). The TACh method uses pulverized frozen tissue as starting material and employs one of the two robust endonucleases, Benzonase or Cyansase, which are fully active under a range of stringent conditions such as high levels of detergent and DTT. As a proof of principle we applied TACh to frozen mouse liver tissue. Combined with massive parallel sequencing TACh identifies accessible regions that are associated with euchromatic features and accessibility at transcriptional start sites correlates positively with levels of gene transcription. Accessible chromatin identified by TACh overlaps to a large extend with accessible chromatin identified by DNase I using nuclei purified from freshly isolated liver tissue as starting material. The similarities are most pronounced at highly accessible regions, whereas identification of less accessible regions tends to be more divergence between nucleases. Interestingly, we show that some of the differences between DNase I and Benzonase relate to their intrinsic sequence biases and accordingly accessibility of CpG islands is probed more efficiently using TACh.The TACh methodology identifies accessible chromatin derived from frozen tissue samples. We propose that this simple, robust approach can be applied across a broad range of clinically relevant samples to allow demarcation of regulatory elements of considerable prognostic significance.The coupling of next-generation sequencing methodologies with classical enzymatic chromatin digestion approaches (eg. DNase I and MNase) has provided global, high-resolution information on chromatin features such as nucleosome positioning and chromatin accessibility [1,2]. DNase-Seq has emerged as a powerful genome-wide tool to identify and characterize chromatin transitions (DNase I hypersensitive sites or DHS) in regulatory regions across a range of biological processes and cell lines [1,3-5]. Current

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133