This study aimed at evaluating the potential of Schizolobium parahyba to produce laminated veneer lumber (LVL) and the feasibility of a nondestructive method for grading the veneers. Initially, 64 S. parahyba veneers were nondestructively tested using the stress wave method, and stress wave velocity (wv) and veneer dynamic modulus of elasticity (E dV) were determined. Afterwards, the veneers were graded according to E dV descending values and used to manufacture 8-ply LVL boards. After the manufacturing, the boards were also nondestructively tested, and the board dynamic modulus of elasticity (E dB) was determined. Simple linear regression analysis was run to evaluate the relationship between the nondestructive and mechanical properties of veneers/boards. A positive effect of veneer stress wave properties on the LVL properties was found. Therefore, the higher the E dV values, the higher the LVL properties. The relationships between E dV and E dB properties were highly significant with all mechanical properties. It was clearly observed that when this grading procedure was used, the veneers were indirectly graded by their density. Finally, it could be concluded that S. parahyba showed good potential to produce LVL.
References
[1]
Pellerin, R.F.; Ross, R.J. Nondestructive Evaluation of Wood; Forest Products Society: Madison, WI, USA, 2002; pp. 1–210.
[2]
Ross, R.J.; Yang, V.W.; Illman, B.L.; Nelson, W.J. Relationship between stress wave transmission time and bending strength of deteriorated oriented strandboard. For. Prod. J. 2003, 53, 33–35.
[3]
Del Menezzi, C.H.S.; Tomaselli, I.; Souza, M.R. Avalia??o n?o-destrutiva de painéis OSB modificados termicamente. Parte 1: Efeito do tratamento térmico sobre a velocidade de propaga??o de ondas de tens?o. Scientia Forestalis 2007, 76, 67–75.
[4]
Nzokou, P.; Freed, J.; Kamdem, D.P. Relationship between non destructive and static modulus of elasticity of commercial wood plastic composites. Holz als Roh und Werkstoff 2006, 64, 90–93, doi:10.1007/s00107-005-0080-x.
[5]
Araújo, P.C.; Arruda, L.M.; Del Menezzi, C.H.S.; Teixeira, D.E. Lignocellulosic composites from Brazilian giant bamboo (Guadua magna). Part 2. Properties of cement and gypsum bonded particleboards. Maderas. Ciencia y Tecnologia 2011, 13, 295–306.
[6]
Arruda, L.M.; Del Menezzi, C.H.S.; Teixeira, D.E.; Araújo, P.C. Lignocellulosic composites from Brazilian giant bamboo (Guadua magna). Part 1. Properties of resin bonded particleboards. Maderas. Ciencia y Tecnologia 2011, 13, 49–58.
[7]
Han, G.; Wu, Q.; Wang, X. Stress-wave velocity of wood-based panels: Effect of moisture, product type, and material direction. For. Prod. J. 2006, 56, 28–33.
[8]
Souza, F.; Del Menezzi, C.H.S.; Bortoletto, G., Jr. Material properties and nondestructive evaluation of laminated veneer lumber (LVL) made from Pinus oocarpa and P. kesiya. Eur. J. Wood Wood Prod. 2011, 69, 183–192, doi:10.1007/s00107-010-0415-0.
[9]
Ferraz, J.M.; Del Menezzi, C.H.S.; Teixeira, D.E.; Okino, E.Y.A.; Souza, F.; Bravim, A.G. Propriedades de painéis de partículas laminadas paralelas utilizados com alternativa à madeira maci?a. Cerne 2009, 15, 67–74.
[10]
Palma, H.A.L.; Escobar, J.F.; Ballarin, A.W.; Leonello, E.C. Influência da qualidade das laminas no desempenho mecanico à flex?o de painéis compensados de Hevea brasiliensis. Floresta e Ambiente 2012, 19, 133–140, doi:10.4322/floram.2012.015.
[11]
Pio, N.S.; Keinert, S., Jr.; Iwakiri, S.; Cunha, U.S.; Rocha, M.P.; Lucas Filho, F.C. Análise da resistência e elasticidade em flex?o de painéis LVL de Eucalyptus grandis com laminas pré-classificadas. Floresta 2012, 42, 11–20.
[12]
Teles, R.F.; Del Menezzi, C.H.S.; Souza, M.R.; Souza, F. Effect of nondestructive testing of laminations on the bending properties of glulam made from louro-vermelho (Sextonia rubra). Cerne 2010, 16, 77–85.
[13]
Bortoletto, G., Jr. Effects of ply grading and assembly on the properties of plywood panels from Pinus merkusii. Cerne 2010, 16, 145–153.
[14]
Ross, R.J.; Erickson, J.R.; Brashaw, B.K.; Wang, X.; Verhey, S.A.; Forsman, J.W.; Pilon, C.L. Yield and ultrasonic modulus of elasticity of red maple veneer. For. Prod. J. 2004, 54, 220–225.
[15]
Wang, X.; Ross, R.J.; Brashaw, B.K.; Verhey, S.A.; Forsman, J.W.; Erickson, J.R. Flexural Properties of Laminated Veneer Lumber Manufactured from Ultrasonically Rated Red Maple Veneer; USDA: Washington, DC, USA, 2004; pp. 1–5.
[16]
Bortoletto, G., Jr.; Belini, U.L. Produ??o de laminas e manufatura de compensados a partir da madeira de guapuruvu (Schizolobium parayba Blake) proveniente de um plantio misto de espécies nativas. Cerne 2003, 9, 16–28.
[17]
Standard Specification for Evaluation of Structural Composites Lumber; American Society for Testing and Materials: West Conshohocken, PA, USA, 2006.
[18]
Palma, H.A.L.; Ballarin, A.W. Propriedades físicas e mecanicas de painéis LVL de Eucalyptus grandis. Ciênc. Florest. 2011, 21, 559–566.
[19]
Campos, M.B.S.; Del Menezzi, C.H.S.; Souza, M.R. Flexural properties of wood I-beams flanged with tropical hardwoods. J. Trop. For. Sci. 2012, 24, 369–378.
[20]
DeVallance, D.B.; Funck, J.W.; Reeb, J.E. Evaluation of laminated veneer lumber tensile strength using optical scanning and combined optical-ultrasonic techniques. Wood Fiber Sci. 2011, 43, 169–179.
[21]
Achim, A.; Paradis, N.; Carter, P.; Hernández, R.E. Using acoustic sensors to improve the efficiency of the forest value chain in Canada: A case study with laminated veneer lumber. Sensors 2011, 11, 5716–5728, doi:10.3390/s110605716.