全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Evaluation of Hidden Semi-Markov Models Training Methods for Greek Emotional Text-to-Speech Synthesis

Keywords: HMM Synthesis , Emotional Synthesis , HSMM Adaptation

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper describes and evaluates four different HSMM (hidden semi-Markov model) training methods for HMM-based synthesis of emotional speech. The first method, called emotion-dependent modelling, uses individual models trained for each emotion separately. In the second method, emotion adaptation modelling, at first a model is trained using neutral speech, and thereafter adaptation is performed to each emotion of the database. The third method, emotion-independent approach, is based on an average emotion model which is initially trained using data from all the emotions of the speech database. Consequently, an adaptive model is build for each emotion. In the fourth method, emotion adaptive training, the average emotion model is trained with simultaneously normalization of the output and state duration distributions. To evaluate these training methods, a Modern Greek speech database which consists of four categories of speech, anger, fear, joy and sadness, was used. Finally, an emotion recognition rate subjective test was performed in order to measure and compare the ability of each of the four approaches in synthesizing emotional speech. The evaluation results showed that the emotion adaptive training achieved the highest emotion recognition rates among four evaluated methods, throughout all four emotions of the database.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133