全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Forest carbon in North America: annual storage and emissions from British Columbia’s harvest, 1965–2065

DOI: 10.1186/1750-0680-7-8

Keywords: Forest products, C-accounting, Life-cycle analysis, Building science, Landfill emissions

Full-Text   Cite this paper   Add to My Lib

Abstract:

The model, British Columbia Harvested Wood Products version 1 (BC-HWPv1), estimates carbon stocks and fluxes for wood harvested in BC from 1965 to 2065, based on new parameters on local manufacturing, updated and new information for North America on consumption and disposal of wood and paper products, and updated parameters on methane management at landfills in the USA. Based on model results, reporting on emissions as they occur would substantially lower BC’s greenhouse gas inventory in 2010 from 48 Mt CO2 to 26 Mt CO2 because of the long-term forest carbon storage in-use and in the non-degradable material in landfills. In addition, if offset projects created under BC’s protocol reported 100?year cumulative emissions using the BC-HWPv1 the emissions would be lower by about 11%.This research showed that the IPCC default methods overestimate the emissions North America wood products. Future IPCC GHG accounting methods could include a lower emissions factor (e.g. 0.52) multiplied by the annual harvest, rather than the current multiplier of 1.0. The simulations demonstrated that the primary opportunities for climate change mitigation are in shifting from burning mill waste to using the wood for longer-lived products.Current estimates of greenhouse gas (GHG) emissions from wood harvested in British Columbia (BC) may be too high because the default international accounting rules assume the biogenic carbon (C) is emitted at the time of harvest [1]. The national and provincial GHG Inventory reports follow this rule, and therefore include all biogenic C in harvested wood as an immediate emission of CO2[2,3]. In addition, forest C emitted as methane in landfills is reported in the waste category. Detailed accounting the C balance in harvested wood products (HWP) is important for evaluating climate change mitigation strategies. Forest ecosystems and products can contribute to mitigation efforts because the growing forest is a sink for CO2 and some products can store that C fo

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133