全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Phylogenetic identification of bacterial MazF toxin protein motifs among probiotic strains and foodborne pathogens and potential implications of engineered probiotic intervention in food

DOI: 10.1186/2045-3701-2-39

Keywords: toxin-antitoxin module, probiotic cocktail, engineered probiotics, foodborne pathogens

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper, with comparative data and phylogenetic analyses, we are able to identify several potential MazF-conserved motifs in limited subsets of foodborne pathogens and probiotic strains and further provide a molecular basis for the development of engineered/synthetic probiotic strains for the mitigation of foodborne illnesses. Our findings also show that some probiotic strains, as fit as many bacterial foodborne pathogens, can be genetically categorized into three major groups based on phylogenetic analysis of MazF. In each group, potential functional motifs are conserved in phylogenetically distant species, including foodborne pathogens and probiotic strains.These data provide important knowledge for the identification and computational prediction of functional motifs related to programmed cell death. Potential implications of these findings include the use of engineered probiotic interventions in food or use of a natural probiotic cocktail with specificity for controlling targeted foodborne pathogens.Foodborne illnesses continue to be an important public health concern in developing, as well as in developed countries, thus prevention of foodborne illness outbreaks through effective and novel interventions should be given priority. The U.S. Public Health Service has identified ten important foodborne pathogens causing human illnesses, including pathogenic strains of Escherichia coli, Salmonella, Listeria, Clostridium botulinum, Shigella, and Campylobacter, which are associated with more than 250 known foodborne diseases (http://www3.niaid.nih.gov/topics/foodborne/default.htm webcite).In addition, according to the World Health Organization (WHO), antibiotic overuse in food animal production is a major contributor to the emergence of antibiotic resistant foodborne pathogens [1]. The use of antibiotics in food animals for growth promotion and treatment disrupts the normal beneficial commensal bacterial microflora in the animal intestinal tract [2-6]. Recently, t

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133